留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

进口拐角波系对超燃冲压发动机尾喷管的性能影响

陈冲 葛建辉 徐惊雷 苏鹏 俞凯凯

陈冲,葛建辉,徐惊雷,等. 进口拐角波系对超燃冲压发动机尾喷管的性能影响[J]. 北京航空航天大学学报,2024,50(10):3250-3261 doi: 10.13700/j.bh.1001-5965.2022.0768
引用本文: 陈冲,葛建辉,徐惊雷,等. 进口拐角波系对超燃冲压发动机尾喷管的性能影响[J]. 北京航空航天大学学报,2024,50(10):3250-3261 doi: 10.13700/j.bh.1001-5965.2022.0768
CHEN C,GE J H,XU J L,et al. Influence of inlet corner wave system on performance of scramjet nozzle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3250-3261 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0768
Citation: CHEN C,GE J H,XU J L,et al. Influence of inlet corner wave system on performance of scramjet nozzle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3250-3261 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0768

进口拐角波系对超燃冲压发动机尾喷管的性能影响

doi: 10.13700/j.bh.1001-5965.2022.0768
基金项目: 国家自然科学基金(11802123)
详细信息
    通讯作者:

    E-mail:jianhuig@nuaa.edu.cn

  • 中图分类号: V231.3

Influence of inlet corner wave system on performance of scramjet nozzle

Funds: National Natural Science Foundation of China (11802123)
More Information
  • 摘要:

    为了探究进口拐角波系对超燃冲压发动机喷管的壁面压力分布作用机制,考虑进口拐角波系对超燃冲压发动机尾喷管性能的影响,开展不同拐角波及其强度对喷管气动参数影响的数值模拟分析。进行数值方法有效性和网格无关性验证,利用不同的前后台阶来形成进口拐角波系,研究了不同波系和波系强度对喷管气动性能的影响。结果表明,进口拐角波系造成的进口非均匀对喷管气动性能造成显著影响,其中推力系数在上下壁面存在后台阶时最大增加13.98%,升力在下壁面前台阶时提高94.32%,而俯仰力矩则在上壁面前台阶、下壁面后台阶时最多降低35.47%。当喷管进口存在单侧前台阶时,随台阶高度增加,升力与俯仰力矩的变化趋势一致;而喷管进口存在单侧后台阶时,结论相反。此外,壁面台阶对喷管性能的影响是相互独立的,且基本符合线性叠加原理。

     

  • 图 1  AW2喷管构型示意

    Figure 1.  AW2 nozzle configuration

    图 2  AW2型喷管计算网格示意

    Figure 2.  AW2 nozzle computing grid

    图 3  文献[16]中数值模拟和实验得到的壁面压力分布对比

    Figure 3.  Comparison of wall pressure distribution between numerical simulation and experiment in reference [16]

    图 4  文献[17]中数值模拟和实验得到的壁面压力分布对比

    Figure 4.  Comparison of wall pressure distribution between numerical simulation and experiment in reference [17]

    图 5  文献[17]中数值模拟和实验得到的湍动能分布对比

    Figure 5.  Comparison of turbulent kinetic energy distribution between numerical simulation and experiment in reference [17]

    图 6  本文中喷管构型示意

    Figure 6.  Nozzle configuration in this study

    图 7  研究中使用的喷管计算网格示意

    Figure 7.  Nozzle computing grid used in this study

    图 8  不同网格尺度获得的下壁面压力分布

    Figure 8.  Pressure distributions on lower walls obtained from different grid scales

    图 9  不同网格尺度获得的下壁面摩擦系数分布

    Figure 9.  Friction coefficient distribution on lower walls obtained from different grid scales

    图 10  喷管流场的实验纹影

    Figure 10.  Experimental schlieren diagram of nozzle flow field

    图 11  典型前后台阶下的流场结构示意

    Figure 11.  Flow field structure under typical forward and backward step

    图 12  上壁面在前台阶作用下和下壁面在后台阶作用下的流场结构示意

    Figure 12.  Flow field structure with forward and backward step on upper/lower wall

    图 13  $ u_{+3\%} $台阶下喷管流场压力和马赫数分布云图

    Figure 13.  Cloud charts of pressure and Mach number distributions in nozzle flow field under step of $ u_{+3\%} $

    图 14  $ u_{-3\%} $台阶下喷管流场压力和马赫数分布云图

    Figure 14.  Cloud charts of pressure and Mach number distributions in nozzle flow field under step of $ u_{-3\%} $

    图 15  上壁面拐角波系下的喷管气动性能变化曲线

    Figure 15.  Variation curves of aerodynamic performance of nozzle under corner wave system of upper wall

    图 16  $ u_{+3\%} $,$ u_{-3\%} $和${u_0}$作用下的壁面沿程压力分布

    Figure 16.  Pressure distributions along walls under$ u_{+3\%} $,$ u_{-3\%} $, and $ u_{0} $

    图 17  $ d_{+3\%} $台阶下喷管流场压力和马赫数分布云图

    Figure 17.  Cloud charts of pressure and Mach number distributions in nozzle flow field under step of $ d_{+3\%}$

    图 18  $ d_{-3\%} $台阶下喷管流场压力和马赫数分布云图

    Figure 18.  Cloud charts of pressure and Mach number distributions in nozzle flow field under step of $ d_{-3\%}$

    图 19  下壁面拐角波系下的喷管气动性能变化曲线

    Figure 19.  Variation curves of aerodynamic performance of nozzle under corner wave system of lower wall

    图 20  $ d_{+3\%}$,$ d_{-3\%}$、$ d_{0}$作用下的壁面沿程压力分布

    Figure 20.  Pressure distributions along walls under $ d_{+3\%}$,$ d_{-3\%}$, and $ d_{0}$

    图 21  ${u_ - }{d_ + }$台阶下喷管流场压力和马赫数分布云图

    Figure 21.  Cloud charts of pressure and Mach number distributions in nozzle flow field under step of ${u_ - }{d_ + }$

    图 22  双侧${u_ - }{d_ + }$与单独${u_ - }$和${d_ + }$作用下的升力变化曲线

    Figure 22.  Comparison of nozzle lift variation under step of $ u_-d_+ $ and corresponding single-sided step type

    图 23  $ {u_+}{d_+} $,$ u_-d_-$,$ u_{+}d_-$,$ u_-d_+ $下的喷管性能变化曲线

    Figure 23.  Variation curves of aerodynamic performance of nozzle under $ {u_+}{d_+} $,$ u_-d_-$,$ u_{+}d_-$, and $ u_-d_+ $

    表  1  计算域进出口流动参数

    Table  1.   Flow conditions of inlet and outlet in calculation domain

    参数 数值
    计算域进口马赫数Main 1.76
    计算域进口静压Pin/Pa 45454.52
    计算域进口静温Tin/K 1 821.97
    环境压力Pe/Pa 3 466.0
    环境温度Te/K 219.57
    巡航马赫数Ma0 5.00
    巡航高度H/km 23.00
    下载: 导出CSV
  • [1] ORTON G F, SCUDERIT L F, SANGER P W, et al. Airbreathing hypersonic aircraft and transatmospheric vehicles[M]. Reston: American Institute of Aeronautics and Astronautics, Inc., 1997.
    [2] FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58. doi: 10.2514/1.9178
    [3] FERRI A. Review of scramjet propulsion technology[J]. Journal of Aircraft, 1968, 5(1): 3-10. doi: 10.2514/3.43899
    [4] FALEMPIN F H. Scramjet developments in France[M]. Reston: American Institute of Aeronautics and Astronautics, Inc., 2000.
    [5] JOHNSTON P J , CUBBAGE J M , WEIDNER J P . Studies of engine-airframe integration on hypersonic aircraft[J]. Journal of Aircraft, 1970, 8(7): 495-501.
    [6] MO J W, XU J L, GU R, et al. Design of an asymmetric scramjet nozzle with circular to rectangular shape transition[J]. Journal of Propulsion and Power, 2014, 30(3): 812-819. doi: 10.2514/1.B34949
    [7] LANDSBERG W O, WHEATLEY V, SMART M K, et al. Performance of high Mach number scramjets - Tunnel vs flight[J]. Acta Astronautica, 2018, 146: 103-110. doi: 10.1016/j.actaastro.2018.02.031
    [8] LU X, YUE L J, XIAO Y B, et al. Design of scramjet nozzle employing streamline tracing technique[C]// Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009: AIAA2009-7248.
    [9] HIRAIWA T, TOMIOKA S, UEDA S, et al. Performance variation of scramjet nozzle at various nozzle pressure ratios[J]. Journal of Propulsion and Power, 1995, 11(3): 403-408. doi: 10.2514/3.23858
    [10] 张晓源, 覃粒子, 刘宇. 非均匀入口与化学非平衡效应对尾喷管性能的影响研究[J]. 推进技术, 2014, 35(2): 166-171.

    ZHANG X Y, QIN L Z, LIU Y. Non-uniform entrance and non-equilibrium chemical effects on scramjet nozzle performance[J]. Journal of Propulsion Technology, 2014, 35(2): 166-171 (in Chinese).
    [11] 全志斌, 徐惊雷, 李斌, 等. 超燃冲压发动机尾喷管非均匀进口的冷流试验与数值模拟[J]. 航空学报, 2013, 34(10): 2308-2315.

    QUAN Z B, XU J L, LI B, et al. Cold flow experiment and numerical simulation on nonuniform entrance flow of scramjet nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2308-2315 (in Chinese).
    [12] 张璞, 徐惊雷, 全志斌. 激波/膨胀波造成的非均匀进口对单边膨胀喷管性能的影响及对比研究[C]//第七届全国高超声速科技学术会议. 北京: 中国力学 学会, 2014.

    ZHANG P, XU J L, QUAN Z B. Effect of shock/expansion wave induced non-uniform inlet on performance of unilateral expansion nozzle and comparative study[C]//The 7th Hypersonic Science and Technology Conference. Beijing: Chinese Society of Mechanics, 2014(in Chinese).
    [13] 陈以勒, 俞凯凯, 徐惊雷. 超燃冲压发动机尾喷管进口气流角畸变研究[J]. 推进技术, 2021, 42(12): 2694-2702.

    CHEN Y L, YU K K, XU J L. Effects of inlet flow angle distortion on scramjet nozzle[J]. Journal of Propulsion Technology, 2021, 42(12): 2694-2702 (in Chinese).
    [14] MO J W, XU J L, QUAN Z B, et al. Design and cold flow test of a scramjet nozzle with nonuniform inflow[J]. Acta Astronautica, 2015, 108: 92-105. doi: 10.1016/j.actaastro.2014.12.005
    [15] GAFFNEY R L Jr. Design of a Mach-15 total-enthalpy nozzle with non-uniform inflow using rotatioanl MOC[C]//Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: AIAA2005-691.
    [16] BARE E A, CAPONE F J. Static internal performance of convergent single-expansion-ramp nozzles with various combinations of internal geometric parameters[R]. Washington: National Aeronautics and Space Administration, 1989.
    [17] ARAI T, SUGIYAMA H, HOMAREDA M, et al. Turbulence characteristics of supersonic boundary layer past a backward facing step[C]// Proceedings of the International Aerospace Planes and Hypersonics Technologies. Reston: AIAA, 1995.
    [18] 陈以勒, 俞凯凯, 徐惊雷. 几何尺寸约束的超燃冲压发动机推力喷管设计[J]. 航空学报, 2021, 42(6): 124259.

    CHEN Y L, YU K K, XU J L. New design method for scramjet nozzles with strong geometric constraints[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124259 (in Chinese).
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  120
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 录用日期:  2022-11-01
  • 网络出版日期:  2022-11-15
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答