留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点接触共轭渐开线蜗杆副啮合理论及性能分析

任雯 李杰 王天羽 李海涛

任雯,李杰,王天羽,等. 点接触共轭渐开线蜗杆副啮合理论及性能分析[J]. 北京航空航天大学学报,2024,50(10):3183-3195 doi: 10.13700/j.bh.1001-5965.2022.0778
引用本文: 任雯,李杰,王天羽,等. 点接触共轭渐开线蜗杆副啮合理论及性能分析[J]. 北京航空航天大学学报,2024,50(10):3183-3195 doi: 10.13700/j.bh.1001-5965.2022.0778
REN W,LI J,WANG T Y,et al. Meshing theory and performance analysis of point-contact conjugate involute worm gear pair[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3183-3195 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0778
Citation: REN W,LI J,WANG T Y,et al. Meshing theory and performance analysis of point-contact conjugate involute worm gear pair[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3183-3195 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0778

点接触共轭渐开线蜗杆副啮合理论及性能分析

doi: 10.13700/j.bh.1001-5965.2022.0778
基金项目: 直升机传动技术国家重点实验室基金(HTL-O-19G02)
详细信息
    通讯作者:

    E-mail:h.li@cau.edu.cn

  • 中图分类号: TH132.4

Meshing theory and performance analysis of point-contact conjugate involute worm gear pair

Funds: Fund of National Key Laboratory of Science and Technology on Helicopter Transmission (HTL-O-19G02)
More Information
  • 摘要:

    点接触共轭渐开线蜗杆传动可以降低蜗杆副对制造、装配等误差的敏感性,并能保证传动精度。基于微分几何和齿轮啮合原理,构建了含有制造和安装误差的点接触共轭渐开线蜗杆传动数学模型,研究了螺旋角、模数、压力角等主要设计参数对啮合性能的影响规律,并进行了传动副对制造和安装误差敏感性的研究。通过仿真实验验证了接触区的分布情况。研究结果表明,含有制造和安装误差时,传动副的瞬时传动比恒定;选取适中的螺旋角、较小的模数及较小的压力角会增大接触区的面积,提高传动副的重合度;传动副对制造和安装误差均不敏感,但应尽量减小或避免制造和安装轴交角造成的误差。通过仿真分析得到接触区和重合度与理论计算结果一致,验证了所提理论的正确性。

     

  • 图 1  双自由度展成渐开线蜗杆坐标系

    Figure 1.  Coordinate system of generation of involute worm with two degrees of freedom

    图 2  单自由度展成蜗轮坐标系

    Figure 2.  Coordinate system of generation of worm gear with single degree of freedom

    图 3  点接触共轭渐开线蜗杆副坐标系

    Figure 3.  Coordinate system of point-contact conjugate involute worm gear pair

    图 4  接触迹线与接触区随螺旋角的变化情况

    Figure 4.  Variation of contact line and area with helix angle

    图 5  螺旋角对椭圆长轴和重合度的影响

    Figure 5.  Influence of helix angle on major axis of ellipse and contact ratio

    图 6  接触迹线与接触区随模数的变化情况

    Figure 6.  Variation of contact line and area with modulus

    图 7  模数对椭圆长轴和重合度的影响

    Figure 7.  Influence of modulus on major axis of ellipse and contact ratio

    图 8  接触迹线与接触区随压力角的变化情况

    Figure 8.  Variation of contact line and area with pressure angle

    图 9  压力角对椭圆长轴和重合度的影响

    Figure 9.  Influence of pressure angle on major axis of ellipse and contact ratio

    图 10  接触迹线随中心距误差的变化情况

    Figure 10.  Variation of contact line with center distance error

    图 11  接触迹线随轴交角误差的变化情况

    Figure 11.  Variation of contact line with crossed axis angle error

    图 12  接触迹线随轴向移动误差的变化情况

    Figure 12.  Variation of contact line with axial movement error

    图 13  误差对椭圆长半轴的影响

    Figure 13.  Influence of error on major axis of ellipse

    图 14  点接触共轭渐开线蜗杆副三维模型

    Figure 14.  Three-dimensional model of point-contact conjugate involute worm gear pair

    图 15  蜗轮齿面接触压强及状态

    Figure 15.  Contact pressure and state of worm gear tooth surface

    图 16  安装误差对蜗轮齿面压强的影响

    Figure 16.  Influence of error on pressure of worm gear tooth surface

    表  1  螺旋角几何参数

    Table  1.   Geometric parameters of helix angle

    算例 螺旋角β2/(°)
    算例Ⅰ-A 3.0
    算例Ⅰ-B 3.6
    算例Ⅰ-C 4.2
    算例Ⅰ-D 4.8
    下载: 导出CSV

    表  2  模数几何参数

    Table  2.   Geometric parameters of modulus

    算例 端面模数mt2/ mm
    算例Ⅱ-A 2.7
    算例Ⅱ-B 3.0
    算例Ⅱ-C 3.3
    算例Ⅱ-D 3.6
    下载: 导出CSV

    表  3  压力角几何参数

    Table  3.   Geometric parameters of pressure angle

    算例 压力角αn/(°)
    算例Ⅲ-A 18.5
    算例Ⅲ-B 20.0
    算例Ⅲ-C 21.5
    算例Ⅲ-D 23.0
    下载: 导出CSV

    表  4  误差几何参数

    Table  4.   Geometric parameters of errors

    参数 误差值 参数 误差值
    a14/mm ±0.4 Σ14/(°) ±0.8
    a23/mm ±0.4 Σ23/(°) ±0.8
    a12/mm ±0.4 Σ12/(°) ±0.8
    b14/mm ±0.4 c14/mm ±0.4
    b23/mm ±0.4 c23/mm ±0.4
    c1/mm ±0.4 c2/mm ±0.4
    下载: 导出CSV
  • [1] 王树人, 刘平娟. 圆柱蜗杆传动啮合原理[M]. 天津: 天津科学技术出版社, 1982.

    WANG S R, LIU P J. Meshing principle of cylindrical worm drive[M]. Tianjin: Tianjin Scientific & Technical Publishers, 1982 (in Chinese).
    [2] LITVIN F L, FUENTES A. Gear geometry and applied theory[M]. 2nd ed. New York: Cambridge University Press, 2004.
    [3] 吴鸿业, 张亚雄, 齐麟. 蜗杆传动设计[M]. 北京: 机械工业出版社, 1986.

    WU H Y, ZHANG Y X, QI L. Worm drive design[M]. Beijing: China Machine Press, 1986(in Chinese).
    [4] 申永胜. 机械原理教程[M]. 2版. 北京: 清华大学出版社, 2005: 162-165.

    SHEN Y S. Theory of machines and mechanisms[M]. 2nd ed. Beijing: Tsinghua University Press, 2005: 162-165(in Chinese).
    [5] 田培棠. 齿轮刀具设计与选用手册[M]. 北京: 国防工业出版社, 2011: 73-77.

    TIAN P T. Handbook of gear cutter design and selection[M]. Beijing: National Defense Industry Press, 2011: 73-77(in Chinese).
    [6] 彭泽良. 渐开线圆柱蜗杆传动承载啮合理论与实验研究[D]. 重庆: 重庆大学, 2003: 34-39.

    PENG Z L. Theoretical and experimental research on loaded meshing of involute cylinder worm-drive[D]. Chongqing: Chongqing University, 2003: 34-39(in Chinese).
    [7] 赵迪, 方舟, 范庆明, 等. 渐开线蜗轮蜗杆参数化设计及装配误差分析[J]. 西安工业大学学报, 2019, 39(2): 152-158.

    ZHAO D, FANG Z, FAN Q M, et al. Parametric design and assembly error analysis of an involute worm gear[J]. Journal of Xi’an Technological University, 2019, 39(2): 152-158(in Chinese).
    [8] 沈谦. 点接触圆柱蜗杆传动的设计原理[J]. 南京航空航天大学学报, 1991, 23(2): 48-54.

    SHEN Q. A design principle of cylindrical worm drive with point contact tooth surface[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1991, 23(2): 48-54(in Chinese).
    [9] 苏代忠, 陈兵奎, 秦大同, 等. 失配渐开线圆柱蜗杆传动的弹性啮合分析、加工仿真及相关技术的理论与试验研究[J]. 机械工程学报, 2002, 38(增刊1): 56-60.

    SU D Z, CHEN B K, QIN D T, et al. Elastic meshing analysis, machining simulation and theoretical and experimental research on related technologies of mismatched involute cylindrical worm drive[J]. Chinese Journal of Mechanical Engineering, 2002, 38(Sup 1): 56-60(in Chinese).
    [10] YE X X, CHEN Y H, LU B B, et al. Study on a novel backlash-adjustable worm drive via the involute helical beveloid gear meshing with dual-lead involute cylindrical worm[J]. Mechanism and Machine Theory, 2022, 167: 104466. doi: 10.1016/j.mechmachtheory.2021.104466
    [11] SIMON V. Load distribution in cylindrical worm gears[J]. Journal of Mechanical Design, 2003, 125(2): 356-364. doi: 10.1115/1.1561043
    [12] SIMON V. The influence of gear hobbing on worm gear characteristics[J]. Journal of Manufacturing Science and Engineering, 2007, 129(5): 919-925. doi: 10.1115/1.2752524
    [13] SIMON V. Computer aided loaded tooth contact analysis in cylindrical worm gears[J]. Journal of Mechanical Design, 2005, 127(5): 973-981. doi: 10.1115/1.1904050
    [14] 秦大同, 张光辉, 加藤正名. 失配点啮合环面蜗杆传动的研究[J]. 机械工程学报, 1995, 31(3): 79-83.

    QIN D T, ZHANG G H, KATO M. Research on mismatch point-contact hourglass worm[J]. Chinese Journal of Mechanical Engineering, 1995, 31(3): 79-83(in Chinese).
    [15] 秦大同, 张光辉, 加藤正名. 锥面包络环面蜗杆与直廓环面蜗轮失配啮合传动的研究[J]. 重庆大学学报(自然科学版), 1995, 18(4): 15-20.

    QIN D T, ZHANG G H, KATO M. Study on mismatched engagement of hourglass worm gearing with the worm generated by a cone and the wheel generated by a straight profile hob[J]. Journal of Chongqing University (Natural Science Edition), 1995, 18(4): 15-20(in Chinese).
    [16] MENG Q X, ZHAO Y P, YANG Z Y, et al. Meshing theory and error sensitivity of mismatched conical surface enveloping conical worm pair[J]. Mechanism and Machine Theory, 2020, 145: 103681. doi: 10.1016/j.mechmachtheory.2019.103681
    [17] MENG Q X, ZHAO Y P, CUI J, et al. Meshing theory of mismatched ZC1 worm drive[J]. Mechanism and Machine Theory, 2020, 150: 103869. doi: 10.1016/j.mechmachtheory.2020.103869
    [18] CHI Y F, ZHAO Y P, ZHU X Y, et al. Mismatched gearing composed of hourglass worm and spur gear: Meshing theory, tooth contact simulation, comprehensive design[J]. Mechanism and Machine Theory, 2022, 174: 104883. doi: 10.1016/j.mechmachtheory.2022.104883
    [19] 赵超飞, 魏冰阳. 直廓环面蜗杆-圆柱斜齿轮传动的几何建模与接触特性分析[J]. 机械传动, 2018, 42(11): 123-126.

    ZHAO C F, WEI B Y. Geometric modeling and contact characteristic analysis of hindley worm and cylindrical helical gear transmission[J]. Journal of Mechanical Transmission, 2018, 42(11): 123-126(in Chinese).
    [20] 董学朱. 齿轮啮合理论基础[M]. 北京: 机械工业出版社,1989.

    DONG X Z. Foundation of gear engagement theory[M]. Beijing: China Machine Press, 1989(in Chinese).
    [21] REN W, LI H T, XU Z K, et al. A point-contact conjugate hourglass worm drive based on the meshing theory of conjugate tooth surfaces generated by two generating surfaces[J]. Mechanism and Machine Theory, 2022, 174: 104877. doi: 10.1016/j.mechmachtheory.2022.104877
    [22] 董学朱, 李海清, 魏文军. 双自由度齿轮啮合理论及应用[M]. 北京: 机械工业出版社,2011.

    DONG X Z, LI H T, WEI W J. Theory and application of gear meshing with two degrees of freedom[M]. Beijing: China Machine Press, 2011(in Chinese).
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  93
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 录用日期:  2022-11-04
  • 网络出版日期:  2023-01-10
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答