留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

侧风对直升机沙盲特性的影响

谭剑锋 杨宇霄 张卫国 王世雄 吕琳

谭剑锋,杨宇霄,张卫国,等. 侧风对直升机沙盲特性的影响[J]. 北京航空航天大学学报,2024,50(10):3111-3122 doi: 10.13700/j.bh.1001-5965.2022.0794
引用本文: 谭剑锋,杨宇霄,张卫国,等. 侧风对直升机沙盲特性的影响[J]. 北京航空航天大学学报,2024,50(10):3111-3122 doi: 10.13700/j.bh.1001-5965.2022.0794
TAN J F,YANG Y X,ZHANG W G,et al. Influence of crosswind on helicopter brownout[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3111-3122 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0794
Citation: TAN J F,YANG Y X,ZHANG W G,et al. Influence of crosswind on helicopter brownout[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3111-3122 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0794

侧风对直升机沙盲特性的影响

doi: 10.13700/j.bh.1001-5965.2022.0794
基金项目: 国家自然科学基金(12172165);江苏省自然科学基金(BK20211259);江苏省高校“青蓝工程”优秀青年骨干教师项目
详细信息
    通讯作者:

    E-mail: Jianfengtan@njtech.edu.cn

  • 中图分类号: V221.52;TB553

Influence of crosswind on helicopter brownout

Funds: National Natural Science Foundation of China (12172165); Natural Science Foundation of Jiangsu Province (BK20211259); Outstanding Young Backbone Teacher Project of Jiangsu Qinglan Project
More Information
  • 摘要:

    直升机旋翼与地面复杂干扰流场诱导沙床沙粒运动,形成沙盲现象,然而侧风改变旋翼与地面干扰流场,改变沙云形态和沙盲现象。因此,将侧风作用项嵌入基于黏性涡粒子的旋翼/地面气动干扰模型,体现侧风对旋翼与地面干扰流场的作用,并基于离散单元法的沙粒动力学模型,增加侧风引起的气动力,体现侧风对沙粒运动的作用。研究侧风对直升机前飞沙盲特性的影响,并分析侧风速度、风向对直升机沙盲特性的影响规律。结果表明:侧风对直升机沙盲沙云形态影响显著,且左侧风显著增强沙尘浓度,而迎风状态减小沙尘浓度;随着侧风速度的增加,左侧风状态下的沙尘浓度先增加后减小。

     

  • 图 1  直升机驾驶舱视野

    Figure 1.  Cockpit view of helicopter

    图 2  飞行员视野坐标

    Figure 2.  Frame of pilot’s view

    图 3  EH-60L直升机前飞轨迹

    Figure 3.  Trajectory of EH-60L in forward flight

    图 4  前飞状态的直升机沙云俯视图

    Figure 4.  Dust cloud of helicopter at top view in forward flight

    图 5  前飞状态的直升机沙云侧视图

    Figure 5.  Dust cloud of helicopter at side view in forward flight

    图 6  前飞状态的直升机沙云正视图

    Figure 6.  Dust cloud of helicopter at front view in forward flight

    图 7  有无侧风直升机沙云俯视图

    Figure 7.  Dust clouds with and without the crosswind at top view

    图 8  有无侧风直升机沙云正视图

    Figure 8.  Dust clouds with and without the crosswind at front view

    图 9  有无侧风直升机xz截面流场

    Figure 9.  Flow field of helicopter with and without crosswind (xz plane)

    图 10  有无侧风直升机后方流场(x=2R)

    Figure 10.  Flow field behind of helicopter with and without crosswind (x=2R)

    图 11  侧风风向角定义

    Figure 11.  Direction of a crosswind angle

    图 12  沙尘浓度随风向角的变化

    Figure 12.  Variations of density of dust cloud with crosswinds at different directions

    图 13  不同风向角的直升机沙云俯视图

    Figure 13.  Dust cloud of helicopter with crosswinds at different directions at top view

    图 14  不同风向角的直升机沙云正视图

    Figure 14.  Dust cloud of the helicopter with crosswinds at different directions at front view

    图 15  沙尘浓度随风速的变化

    Figure 15.  Variations of density of dust cloud at different velocities

    图 16  沙尘浓度雷达图

    Figure 16.  Radar map of Density of dust cloud

    图 17  不同风速的直升机沙云俯视图(θ=−90º)

    Figure 17.  Dust cloud of helicopter with different velocities at top view (θ=−90º)

    图 18  不同风速的直升机沙云正视图(θ=−90º)

    Figure 18.  Dust cloud of helicopter with different velocities at front view (θ=−90º)

    图 19  不同风速的直升机沙云正视图(θ=−60º)

    Figure 19.  Dust cloud of helicopter with different velocities at front view (θ=−60º)

  • [1] SZOBOSZLAY Z, DAVIS B, FUJIZAWA B T, et al. Degraded visual environment mitigation (DVE-M) program, Yuma 2016 flight trials in brownout[C]//Proceedings of the AHS International 73rd Annual Forum&Technology Display. Alexandria: AHS, 2017: 1-20.
    [2] MILLER J, GODFROY-COOPER M, SZOBOSZLAY Z. Degraded visual environment mitigation (DVE-M) program, bumper RADAR obstacle cueing flight trials 2020[C]//Proceedings of the Vertical Flight Society’s 77th Annual Forum& Technology Display. Alexandria: AHS, 2021: 16747.
    [3] WACHSPRESS D A, WHITEHOUSE G R, KELLER J D, et al. A high fidelity brownout model for real-time flight simulations and trainers[C]//Proceedings of the American Helicopter Society 65th Annual Forum. Alexandria: AHS, 2009: 1281-1304.
    [4] WHITEHOUSE G R, WACHSPRESS D A, QUACKENBUSH T R, et al. Exploring aerodynamic methods for mitigating brownout[C]//Proceedings of the American Helicopter Society 65th Annual Forum. Alexandria: AHS, 2009: 349-364.
    [5] JOHNSON B, LEISHMAN J G, SYDNEY A. Investigation of sediment entrainment using dual-phase, high-speed particle image velocimetry[J]. Journal of the American Helicopter Society, 2010, 55(4): 1-16.
    [6] SYDNEY A, LEISHMAN J G. Measurements of rotor/airframe interactions in ground effect over a sediment bed[J]. Annual Forum Proceedings - AHS International, 2013, 3: 1812-1836.
    [7] WONG O D, TANNER P E. Photogrammetric measurements of an EH-60L brownout cloud[J]. Journal of the American Helicopter Society, 2016, 61(1): 1-10.
    [8] RYERSON C, HAEHNEL R, KOENIG G, et al. Visibility enhancement in rotorwash clouds[C]//Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 263.
    [9] HAEHNEL R B, MOULTON M A, WENREN W, et al. A model to simulate rotorcraft-induced brownout[C]//Proceedings of the 64th Annual Forum of the American Helicopter Society. Alexandria: AHS, 2008: 589-601.
    [10] THOMAS S, LAKSHMINARAYAN V K, KALRA T S, et al. Eulerian-Lagrangian analysis of cloud evolution using CFD coupled with a sediment tracking algorithm[J]. Annual Forum Proceedings - AHS International, 2011, 1: 298-315.
    [11] THOMAS S, AMIRAUS M, BAEDER J. GPU-accelerated FVM-RANS hybrid solver for simulating two-phase flow beneath a hovering rotor[C]//Proceedings of the 69th Annual Forum of the American Helicopter Society. Alexandria: AHS, 2013: 2462-2484.
    [12] KUTZ B M, GUNTHER T, RUMPF A, et al. Numerical examination of a model rotor in brownout conditions[C]//Proceedings of the 70th Annual Forum of the American Helicopter Society. Montreal: Engineering, 2014: 2450-2461.
    [13] 胡健平, 徐国华, 史勇杰, 等. 基于CFD-DEM耦合数值模拟的全尺寸直升机沙盲形成机理[J]. 航空学报, 2020, 41(3): 123363.

    HU J P, XU G H, SHI Y J, et al. Formation mechanism of brownout in full-scale helicopter based on CFD-DEM couplings numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123363 (in Chinese).
    [14] GOVINDARAJAN B M, LEISHMAN J G. Predictions of rotor and rotor/airframe configurational effects on brownout dust clouds[J]. Journal of Aircraft, 2016, 53(2): 545-560. doi: 10.2514/1.C033447
    [15] 谭剑锋, 何龙, 于领军, 等. 基于黏性涡粒子/沙粒DEM的直升机沙盲建模[J]. 航空学报, 2022, 43(8): 125536. doi: 10.7527/j.issn.1000-6893.2022.8.hkxb202208025

    TAN J F, HE L, YU L J, et al. Helicopter brownout modeling based on viscous vortex particle and sand particle DEM[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125536 (in Chinese). doi: 10.7527/j.issn.1000-6893.2022.8.hkxb202208025
    [16] 谭剑锋, 韩水, 王畅, 等. 基于DEM的直升机沙盲加速计算方法[J]. 北京航空航天大学学报, 2023, 49(6): 1352-1361.

    TAN J F, HAN S, WANG C, et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1352-1361 (in Chinese).
    [17] TAN J, GAO J W, BARAKOS G, et al. Novel approach to helicopter brownout based on vortex and discrete element methods[J]. Aerospace Science and Technology, 2021, 116: 106839. doi: 10.1016/j.ast.2021.106839
    [18] TAN J F, YON T, HE L, et al. Accelerated method of helicopter brownout with particle-particle collisions[J]. Aerospace Science and Technology, 2022, 124: 107511. doi: 10.1016/j.ast.2022.107511
    [19] 谭剑锋, 周天熠, 王畅, 等. 旋翼地面效应的气动建模与特性[J]. 航空学报, 2019, 40(6): 122602.

    TAN J F, ZHOU T Y, WANG C, et al. Aerodynamic model and characteristics of rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122602 (in Chinese).
  • 加载中
图(19)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  98
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-18
  • 录用日期:  2022-11-14
  • 网络出版日期:  2023-01-17
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答