留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MDk-DPC的空中目标自动分群方法

马钰棠 孙鹏 张杰勇 闫云飞 赵亮

马钰棠,孙鹏,张杰勇,等. 基于MDk-DPC的空中目标自动分群方法[J]. 北京航空航天大学学报,2024,50(10):3219-3229 doi: 10.13700/j.bh.1001-5965.2022.0797
引用本文: 马钰棠,孙鹏,张杰勇,等. 基于MDk-DPC的空中目标自动分群方法[J]. 北京航空航天大学学报,2024,50(10):3219-3229 doi: 10.13700/j.bh.1001-5965.2022.0797
MA Y T,SUN P,ZHANG J Y,et al. Aerial target automatic grouping method based on MDk-DPC[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3219-3229 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0797
Citation: MA Y T,SUN P,ZHANG J Y,et al. Aerial target automatic grouping method based on MDk-DPC[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3219-3229 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0797

基于MDk-DPC的空中目标自动分群方法

doi: 10.13700/j.bh.1001-5965.2022.0797
详细信息
    通讯作者:

    E-mail:281126096@qq.com

  • 中图分类号: V247.5

Aerial target automatic grouping method based on MDk-DPC

More Information
  • 摘要:

    空中目标分群本质上是一个类数未知的聚类问题,也是战场态势估计领域中的研究热点。针对未知的空战场环境,从聚类角度提出一种基于流形距离和k近邻采样密度的MDk-DPC算法。引入流形距离代替欧氏距离,以增加同一流形中目标的相似性;利用k近邻计算目标的局部密度,使其能更真实地反映目标周围分布;通过自适应选取聚类中心方法确定聚类中心,并运用密度峰值算法指定剩余点类别完成分群。仿真实验表明,所提方法在人工合成数据集和UCI真实数据集上均有更好的聚类性能,同时通过对空战场仿真数据进行分群验证了所提方法的可行性和有效性。

     

  • 图 1  数据集中各点二维分布

    Figure 1.  Two-dimensional distribution of points in the dataset

    图 2  ρ=e2时,abbc间的欧氏距离和流形距离

    Figure 2.  When ρ=e2 the Euclidean distance and manifold distance between ab and bc

    图 3  不同k值下的密度热分布图

    Figure 3.  Density heat distribution diagram at different k values

    图 4  自适应选取聚类中心方法流程

    Figure 4.  Flow of adaptive selection of cluster centers

    图 5  5种算法在Jain数据集上的结果比较

    Figure 5.  Comparison of the results of five algorithms on the Jain dataset

    图 6  5种算法在Threecircles数据集上的结果比较

    Figure 6.  Comparison of the results of five algorithms on the Threecircles dataset

    图 7  5种算法在R15数据集上的结果比较

    Figure 7.  Comparison of the results of five algorithms on the R15 dataset

    图 8  初始时刻空中目标分布

    Figure 8.  Air targets distribution at the initial moment

    图 9  t时刻空中目标分布

    Figure 9.  Air targets distribution at time t

    图 10  空中目标分群结果

    Figure 10.  Aerial targets grouping results

    表  1  不同伸缩因子下的Jain数据集聚类结果对比

    Table  1.   Comparison of clustering results of Jain dataset with different scaling factors

    ρ 纯度
    e0.5 0.9249
    e3 1
    e10 1
    下载: 导出CSV

    表  2  人工数据集基本信息

    Table  2.   Basic information of artificial dataset

    数据集数据数量类数维数
    Spiral31232
    Flame24022
    Jain37322
    Lineblobs26632
    Threecircles29932
    R15600152
    下载: 导出CSV

    表  3  人工数据集上的分群结果比较

    Table  3.   Comparison of clustering results on artificial datasets

    数据集 算法 纯度 RI ARI NMI
    Spiral K-means 0.3686 0.5553 0.0030 0.0031
    DBSCAN 1 1 1 1
    DPC 1 1 1 1
    M-CFSFDP 1 1 1 1
    MDk-DPC 1 1 1 1
    Flame K-means 0.8375 0.7267 0.4535 0.4193
    DBSCAN 0.9667 0.9200 0.8408 0.7566
    DPC 1 1 1 1
    M-CFSFDP 1 1 1 1
    MDk-DPC 1 1 1 1
    Jain K-means 0.8365 0.7257 0.4483 0.4428
    DBSCAN 1 0.9698 0.9373 0.8550
    DPC 0.9035 0.8251 0.6438 0.5960
    M-CFSFDP 0.9437 0.8935 0.7684 0.6855
    MDk-DPC 1 1 1 1
    Lineblobs K-means 0.7444 0.7284 0.4077 0.5358
    DBSCAN 1 1 1 1
    DPC 0.7519 0.7345 0.4201 0.5450
    M-CFSFDP 0.8534 0.8318 0.6283 0.7430
    MDk-DPC 1 1 1 1
    Threecircles K-means 0.6254 0.5758 0.1598 0.2298
    DBSCAN 1 0.9766 0.9488 0.9448
    DPC 0.5719 0.4565 0.0659 0.1823
    M-CFSFDP 0.6522 0.5452 0.1697 0.3085
    MDk-DPC 1 1 1 1
    R15 K-means 0.9933 0.9983 0.9857 0.9893
    DBSCAN 0.7317 0.9112 0.5511 0.8852
    DPC 0.9950 0.9987 0.9893 0.9922
    M-CFSFDP 0.9967 0.9991 0.9928 0.9942
    MDk-DPC 0.9967 0.9991 0.9928 0.9942
    下载: 导出CSV

    表  4  UCI真实数据集基本信息

    Table  4.   Basic information of UCI real dataset

    数据集数据数量类数维数各类数量
    WDBC569230357,212
    Iris1503450,50,50
    Wine17831359,71,48
    Seeds2103770,70,70
    Vowel8716372,89,172,151,207,180
    Ecoli33688143,77,2,2,259,20,5,52
    下载: 导出CSV

    表  5  UCI真实数据集上的分群结果比较

    Table  5.   Comparison of clustering results on UCI real datasets

    数据集 算法 纯度 RI ARI NMI
    WDBC K-means 0.8506 0.7454 0.4811 0.4567
    DBSCAN 0.7996 0.6558 0.3191 0.2851
    DPC 0.7891 0.6666 0.3133 0.3400
    M-CFSFDP 0.8664 0.7681 0.5282 0.5070
    MDk-DPC 0.8822 0.7919 0.5773 0.5459
    Iris K-means 0.8800 0.8679 0.7028 0.7277
    DBSCAN 0.9333 0.8786 0.7063 0.7130
    DPC 0.8333 0.8322 0.6334 0.7174
    M-CFSFDP 0.9067 0.8923 0.7592 0.8057
    MDk-DPC 0.9600 0.9495 0.8858 0.8705
    Wine K-means 0.7022 0.7187 0.3711 0.4288
    DBSCAN 0.6461 0.6258 0.2897 0.4029
    DPC 0.7191 0.7350 0.4070 0.3913
    M-CFSFDP 0.7921 0.7739 0.5054 0.5646
    MDk-DPC 0.8933 0.8654 0.6990 0.7262
    Seeds K-means 0.8762 0.8573 0.6793 0.7023
    DBSCAN 0.7476 0.6861 0.2146 0.4083
    DPC 0.8905 0.8715 0.7227 0.7126
    M-CFSFDP 0.8952 0.8748 0.7170 0.6744
    MDk-DPC 0.8952 0.8766 0.7108 0.7245
    Vowel K-means 0.5511 0.8013 0.3360 0.4692
    DBSCAN 0.6958 0.8165 0.2885 0.4864
    DPC 0.5982 0.7852 0.3214 0.4839
    M-CFSFDP 0.6705 0.8103 0.3936 0.5475
    MDk-DPC 0.7405 0.8328 0.4072 0.5360
    Ecoli K-means 0.8006 0.8340 0.5386 0.5771
    DBSCAN 0.6637 0.7601 0.3937 0.4518
    DPC 0.8065 0.8197 0.5000 0.6039
    M-CFSFDP 0.7679 0.8659 0.6913 0.6710
    MDk-DPC 0.7887 0.8852 0.7316 0.6971
    下载: 导出CSV

    表  6  空中目标状态信息

    Table  6.   Air targets status information

    序号 x/m y/m z/m 速度/(km·h−1) 航向角/(°) 群组
    1 4597 9856 4221 959 90 A
    2 4098 10182 4197 934 90 A
    3 3092 11210 4213 967 90 A
    4 3785 9045 4203 980 90 A
    5 2890 8002 4208 942 90 A
    6 9013 24345 4127 931 150 B
    7 9854 24521 3951 964 150 B
    8 9470 23698 4055 954 150 B
    9 11013 10132 4195 980 120 C
    10 10311 9780 4089 979 120 C
    下载: 导出CSV
  • [1] 郭明. 关于智能化战争的基本认知[J]. 人民论坛·学术前沿, 2021(10): 14-21.

    GUO M. Basic understandings of the intelligent wars[J]. Frontiers, 2021(10): 14-21(in Chinese).
    [2] 张绪亮, 张宏军, 綦秀利, 等. 基于改进K-means算法的陆战场机动目标分群方法[J]. 信息技术, 2016, 40(3): 128-131.

    ZHANG X L, ZHANG H J, QI X L, et al. A clustering method of land battlefield maneuvering targets based on improved K-means algorithm[J]. Information Technology, 2016, 40(3): 128-131(in Chinese).
    [3] 詹环, 宋爱斌, 罗俊芝, 等. 基于混合属性无监督聚类的作战目标分群[J]. 火力与指挥控制, 2021, 46(12): 166-170. doi: 10.3969/j.issn.1002-0640.2021.12.026

    ZHAN H, SONG A B, LUO J Z, et al. Operational system target grouping method based on mixed attribute unsupervised clustering[J]. Fire Control & Command Control, 2021, 46(12): 166-170(in Chinese). doi: 10.3969/j.issn.1002-0640.2021.12.026
    [4] DUAN Y X, LIU C Y, LI S. Battlefield target grouping by a hybridization of an improved whale optimization algorithm and affinity propagation[J]. IEEE Access, 2021, 9: 46448-46461. doi: 10.1109/ACCESS.2021.3067729
    [5] 袁德平, 郑娟毅, 史浩山, 等. 一种多作战编队下的目标编群算法[J]. 计算机科学, 2016, 43(2): 235-238. doi: 10.11896/j.issn.1002-137X.2016.02.049

    YUAN D P, ZHENG J Y, SHI H S, et al. Target grouping algorithm based on multiple combat formations[J]. Computer Science, 2016, 43(2): 235-238(in Chinese). doi: 10.11896/j.issn.1002-137X.2016.02.049
    [6] ESTER M, KRIEGEL H, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996: 226–231.
    [7] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. doi: 10.1126/science.1242072
    [8] 闫孟达, 杨任农, 王新, 等. 改进cell密度聚类算法在空战目标分群中的应用[J]. 国防科技大学学报, 2021, 43(4): 108-117. doi: 10.11887/j.cn.202104014

    YAN M D, YANG R N, WANG X, et al. Air combat target grouping based on improved CBSCAN algorithm[J]. Journal of National University of Defense Technology, 2021, 43(4): 108-117(in Chinese). doi: 10.11887/j.cn.202104014
    [9] 李伟楠, 章卫国, 史静平, 等. 基于M-CFSFDP算法的战场目标分群方法[J]. 西北工业大学学报, 2018, 36(6): 1121-1128. doi: 10.3969/j.issn.1000-2758.2018.06.013

    LI W N, ZHANG W G, SHI J P, et al. A battlefield target grouping method based on M-CFSFDP algorithm[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1121-1128(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.06.013
    [10] 段同乐, 张冬宁. 二叉树多分类SVM在目标分群中的应用[J]. 无线电工程, 2015, 45(6): 88-91.

    DUAN T L, ZHANG D N. Application of multiclass SVM based on binary tree in target grouping[J]. Radio Engineering, 2015, 45(6): 88-91(in Chinese).
    [11] 樊振华, 师本慧, 陈金勇, 等. 基于模糊ART划分的目标分群算法[J]. 无线电工程, 2017, 47(9): 27-31. doi: 10.3969/j.issn.1003-3106.2017.09.06

    FAN Z H, SHI B H, CHEN J Y, et al. A fuzzy ART based target clustering algorithm[J]. Radio Engineering, 2017, 47(9): 27-31(in Chinese). doi: 10.3969/j.issn.1003-3106.2017.09.06
    [12] 陶宇, 蒋序平. 基于深度自编码网络的智能目标分群算法[J]. 指挥控制与仿真, 2020, 42(6): 52-58. doi: 10.3969/j.issn.1673-3819.2020.06.009

    TAO Y, JIANG X P. Intelligent target clustering algorithm based on deep auto-encoder network[J]. Command Control & Simulation, 2020, 42(6): 52-58(in Chinese). doi: 10.3969/j.issn.1673-3819.2020.06.009
    [13] WU Z H, LI C, ZHOU F, et al. A new weighted fuzzy C-means clustering approach considering between-cluster separability[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(1): 1017-1024.
    [14] REHMAN A U, BELHAOUARI S B. Divide well to merge better: A novel clustering algorithm[J]. Pattern Recognition, 2022, 122: 108305. doi: 10.1016/j.patcog.2021.108305
    [15] 马萌. 基于流形距离的聚类算法研究及其应用[D]. 西安: 西安电子科技大学, 2010: 9-21.

    MA M. The study and the application of clustering algorithm based on manifold distance[D]. Xi’an: Xidian University, 2010: 9-21(in Chinese).
    [16] CAO X F, QIU B Z, LI X L, et al. Multidimensional balance-based cluster boundary detection for high-dimensional data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(6): 1867-1880. doi: 10.1109/TNNLS.2018.2874458
    [17] SAMET H. K-nearest neighbor finding using MaxNearestDist[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 243-252. doi: 10.1109/TPAMI.2007.1182
    [18] DAI Q Z, XIONG Z Y, XIE J, et al. A novel clustering algorithm based on the natural reverse nearest neighbor structure[J]. Information Systems, 2019, 84: 1-16. doi: 10.1016/j.is.2019.04.001
    [19] XIE J, XIONG Z Y, ZHANG Y F, et al. Density core-based clustering algorithm with dynamic scanning radius[J]. Knowledge-Based Systems, 2018, 142: 58-70. doi: 10.1016/j.knosys.2017.11.025
    [20] TONG W N, LIU S, GAO X Z. A density-peak-based clustering algorithm of automatically determining the number of clusters[J]. Neurocomputing, 2021, 458: 655-666. doi: 10.1016/j.neucom.2020.03.125
    [21] ZHANG R L, SONG X H, YING S R, et al. CA-CSM: A novel clustering algorithm based on cluster center selection model[J]. Soft Computing, 2021, 25(13): 8015-8033. doi: 10.1007/s00500-021-05835-w
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  83
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 录用日期:  2022-11-30
  • 网络出版日期:  2022-12-16
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答