留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于胎内应变分析的重载轮胎垂向力与侧偏力联合估计算法

刘钇汛 刘志浩 高钦和 马超群 刘相新 张佳林

刘钇汛,刘志浩,高钦和,等. 基于胎内应变分析的重载轮胎垂向力与侧偏力联合估计算法[J]. 北京航空航天大学学报,2024,50(11):3532-3541 doi: 10.13700/j.bh.1001-5965.2022.0816
引用本文: 刘钇汛,刘志浩,高钦和,等. 基于胎内应变分析的重载轮胎垂向力与侧偏力联合估计算法[J]. 北京航空航天大学学报,2024,50(11):3532-3541 doi: 10.13700/j.bh.1001-5965.2022.0816
LIU Y X,LIU Z H,GAO Q H,et al. Joint estimation algorithm of vertical force and lateral force of heavy-duty tire based on internal strain analysis of tire[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3532-3541 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0816
Citation: LIU Y X,LIU Z H,GAO Q H,et al. Joint estimation algorithm of vertical force and lateral force of heavy-duty tire based on internal strain analysis of tire[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3532-3541 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0816

基于胎内应变分析的重载轮胎垂向力与侧偏力联合估计算法

doi: 10.13700/j.bh.1001-5965.2022.0816
基金项目: 国家自然科学基金(52472464)
详细信息
    通讯作者:

    E-mail:liuzh_epgc@163.com

  • 中图分类号: U463

Joint estimation algorithm of vertical force and lateral force of heavy-duty tire based on internal strain analysis of tire

Funds: National Natural Science Foundation of China (52472464)
More Information
  • 摘要:

    为实现对轮胎侧偏力的估计,提出一种基于胎内周向应变分析的重载轮胎垂向力与侧偏力联合估计算法。以16.00R20重载轮胎为研究对象,建立了轮胎有限元模型,并开展了垂向刚度和振动特性试验验证了模型的有效性。基于轮胎内衬层周向应变信号分析,建立了周向应变曲线峰值间距角与接地角和接地长度的关联性模型,对比了静载、滚动、侧偏等工况下的表征精度;通过胎内对称点位周向应变分析,提取侧偏力表征特征,分析了垂向力与侧偏力表征特征的线性关系;建立了基于支持向量回归机的垂向力与侧偏力联合估计模型,先以接地角和接地长度为输入识别特征实现对垂向力的估计,进而通过侧偏力表征特征结合垂向力估计对侧偏力进行估计,通过有限元试验验证了模型估计精度。结果表明:以应变曲线零阶和一阶峰值间距角均值对接地角与接地长度的表征误差在4.5%以内;所提算法适用于静载、滚动、侧偏工况,能准确估算垂向力和侧偏力,估计值与有限元仿真值误差小于3%。

     

  • 图 1  轮胎有限元模型

    Figure 1.  Finite element model of tire

    图 2  重载轮胎力学振动试验

    Figure 2.  Mechanical vibration test of heavy-duty tire

    图 3  轮胎接地印迹形状对比

    Figure 3.  Shape comparison of tire grounding track

    图 4  重载轮胎模态振型

    Figure 4.  Modal shape of heavy-duty tire

    图 5  基于胎内应变监测的重载轮胎滚动试验

    Figure 5.  Rolling test of heavy-duty tire based on internal strain monitoring of tire

    图 6  重载轮胎胎面应变信号试验与仿真对比

    Figure 6.  Comparison of tread strain signal test and simulation for heavy-duty tire

    图 7  轮胎内衬层周向应变峰值角度差与接地角对比

    Figure 7.  Comparison of peak angle difference of circumferential strain of tire liner and grounding angle

    图 8  不同垂向力下接地参数表征效果

    Figure 8.  Characterization effect of grounding parameters under different loads

    图 9  侧偏轮胎接地应力云图

    Figure 9.  Grounding stress cloud map of lateral tire

    图 10  侧偏特性与侧偏角的关系

    Figure 10.  Relationship between lateral characteristics and lateral angle

    图 11  侧偏状态轮胎多点位应变

    Figure 11.  Multi-point strain of lateral tire

    图 12  侧偏角对胎侧周向应变差影响规律

    Figure 12.  Effect of lateral angle on lateral circumferential strain difference

    图 13  应变特征与侧偏力关系

    Figure 13.  Relationship between strain characteristics and lateral force

    图 14  不同垂向力下特征值h2归一化对比

    Figure 14.  Comparison of eigenvalue h2 normalization under different loads

    图 15  垂向力估计流程

    Figure 15.  Flow of vertical force estimation

    图 16  垂向力估测效果

    Figure 16.  Estimation effect of vertical force

    图 17  垂向力与侧偏力联合估计流程

    Figure 17.  Flow of joint estimation of vertical force and lateral force

    图 18  侧偏力估测结果

    Figure 18.  Estimation effect of lateral force

    表  1  轮胎下沉量对比

    Table  1.   Comparison of tire subsidence

    垂向力$ {F_{\text{z}}} $/ kN 下沉量仿真值$ \Delta H $/mm 下沉量试验值$ \Delta H $/mm 误差$ \delta $/%
    20 8.3 8.9 7.2
    30 11.8 12.1 2.5
    40 14.6 15.2 4.1
    50 18.4 17.5 4.9
    60 21.3 22.6 6.1
    下载: 导出CSV

    表  2  轮胎模态特征频率

    Table  2.   Tire modal characteristic frequency

    阶数 频率试验值/Hz 频率仿真值/Hz 振型 误差$ \delta $/%
    1 59.48 58.2 错动 2.1
    2 65.22 68.8 2瓣 5.5
    3 80.19 82.6 3瓣 3.0
    4 95.77 96.8 4瓣 1.1
    5 112.1 111.4 5瓣 0.6
    6 128.4 125.9 6瓣 1.9
    7 144.4 139.8 7瓣 3.2
    8 159.8 152.8 8瓣 4.4
    下载: 导出CSV

    表  3  胎面中线接地角

    Table  3.   Tread midline grounding angle

    滚速/(km·h−1) 侧偏角/(°) 仿真值$ {\phi _1} $/(°) 表征值$ {\phi _{\mathrm{c}}} $/(°)
    0 0 26 25
    30 1 25.5 25
    2.5 25 24.75
    5 25 25.25
    10 25 25.25
    70 1 25.5 25
    2.5 25.5 24.75
    5 25 25.25
    10 25 25.25
    100 1 25.5 25
    2.5 25.5 24.75
    5 25 25.25
    10 25 25.25
    下载: 导出CSV
  • [1] 危银涛, 冯希金, 冯启章, 等. 轮胎动态模型研究的进展[J]. 汽车安全与节能学报, 2014, 5(4): 311-323.

    WEI Y T, FNEG X J, FENG Q Z, et al. State of the art for tire dynamical model research[J]. Journal of Automotive Safety and Energy, 2014, 5(4): 311-323 (in Chinese).
    [2] LI L, YANG K, JIA G, et al. Comprehensive tire–road friction coefficient estimation based on signal fusion method under complex maneuvering operations[J]. Mechanical Systems and Signal Processing, 2015, 56-57: 259-276. doi: 10.1016/j.ymssp.2014.10.006
    [3] PAZOOKI A, RAKHEJA S, CAO D P. Modeling and validation of off-road vehicle ride dynamics[J]. Mechanical Systems and Signal Processing, 2012, 28: 679-695. doi: 10.1016/j.ymssp.2011.11.006
    [4] LI B, YANG X B, YANG J. Tire model application and parameter identification—A literature review[J]. SAE International Journal of Passenger Cars—Mechanical Systems, 2014, 7(1): 231-243. doi: 10.4271/2014-01-0872
    [5] LIU Z H, GAO Q H. Development of a flexible belt on an elastic multi-stiffness foundation tire model for a heavy load radial tire with a large section ratio[J]. Mechanical Systems and Signal Processing, 2019, 123: 43-67. doi: 10.1016/j.ymssp.2018.12.053
    [6] CARCATERRA A, ROVERI N. Tire grip identification based on strain information: Theory and simulations[J]. Mechanical Systems and Signal Processing, 2013, 41(1-2): 564-580. doi: 10.1016/j.ymssp.2013.06.002
    [7] YAMASHITA H, MATSUTANI Y, SUGIYAMA H. Longitudinal tire dynamics model for transient braking analysis: ANCF-LuGre tire model[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(3): 031003. doi: 10.1115/1.4028335
    [8] SALAANI M K. Analytical tire forces and moments with physical parameters[J]. Tire Science and Technology, 2008, 36(1): 3-42. doi: 10.2346/1.2804130
    [9] LIU Z H, GAO Q H. Development and parameter identification of the flexible beam on elastic continuous tire model for a heavy-loaded radial tire[J]. Journal of Vibration and Control, 2018, 24(22): 5233-5248. doi: 10.1177/1077546317749674
    [10] 王国林, 万治君, 梁晨, 等. 基于非平衡轮廓理论的子午线轮胎结构设计[J]. 机械工程学报, 2012, 48(24): 112-118. doi: 10.3901/JME.2012.24.112

    WANG G L, WAN Z J, LIANG C, et al. Structural design of radial tire based on non-balanced outline theory[J]. Journal of Mechanical Engineering, 2012, 48(24): 112-118 (in Chinese). doi: 10.3901/JME.2012.24.112
    [11] 赵健, 路妍晖, 朱冰, 等. 内嵌加速度计的智能轮胎纵/垂向力估计算法[J]. 汽车工程, 2018, 40(2): 137-142.

    ZHAO J, LU Y H, ZHU B, et al. Estimation algorithm for longitudinal and vertical forces of smart tire with accelerometer embedded[J]. Automotive Engineering, 2018, 40(2): 137-142 (in Chinese).
    [12] TUONONEN A J. Optical position detection to measure tyre carcass deflections[D]. Espoo: Faculty of Engineering and Architecture of Helsinki Universityof Technology, 2009: 471-481.
    [13] MORINAGA H, WAKAO Y, HANATSUKA Y, et al. The possibility of intelligent tire[J]. FISITA Trans, 2006, 2: 269-280.
    [14] ROVERI N, PEPE G, CARCATERRA A. OPTYRE—A new technology for tire monitoring: evidence of contact patch phenomena[J]. Mechanical Systems and Signal Processing, 2016, 66-67: 793-810. doi: 10.1016/j.ymssp.2015.06.019
    [15] LIU Z H, LIU Y X, GAO Q H. In-plane flexible ring modeling and a nonlinear stiffness solution for heavy-load radial tires[J]. Mechanical Systems and Signal Processing, 2022, 171: 108956. doi: 10.1016/j.ymssp.2022.108956
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  107
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2023-02-11
  • 网络出版日期:  2023-03-22
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答