留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双轴冗余旋转惯导系统精对准方法

王丽芬 邹涛 任元 王卫杰 朱挺

王丽芬,邹涛,任元,等. 双轴冗余旋转惯导系统精对准方法[J]. 北京航空航天大学学报,2024,50(11):3348-3357 doi: 10.13700/j.bh.1001-5965.2022.0818
引用本文: 王丽芬,邹涛,任元,等. 双轴冗余旋转惯导系统精对准方法[J]. 北京航空航天大学学报,2024,50(11):3348-3357 doi: 10.13700/j.bh.1001-5965.2022.0818
WANG L F,ZOU T,REN Y,et al. Fine alignment method for biaxial redundant rotating inertial navigation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3348-3357 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0818
Citation: WANG L F,ZOU T,REN Y,et al. Fine alignment method for biaxial redundant rotating inertial navigation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3348-3357 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0818

双轴冗余旋转惯导系统精对准方法

doi: 10.13700/j.bh.1001-5965.2022.0818
详细信息
    通讯作者:

    E-mail:wanglifen_2009@139.com

  • 中图分类号: V448.25+3

Fine alignment method for biaxial redundant rotating inertial navigation system

More Information
  • 摘要:

    冗余旋转惯导系统(RRINS)相比捷联惯导系统可在提高可靠性的同时通过旋转调制技术减小惯性器件常值误差对导航性能的影响。针对该类系统高精度初始对准需求,以正四面体RRINS为例,对其精对准进行研究。建立每3个陀螺仪和3个加速度计组合方式下系统精对准误差模型;设计卡尔曼滤波器及双轴转位方案;将每种组合方式下的精对准结果及陀螺仪和加速度计零偏的均值作为最终估计结果。仿真结果表明,加速度计零偏估计相对误差在0.2%以内,陀螺仪零偏估计相对误差在0.1%以内。精对准实验结果表明,同等时间内,所提方法的精对准误差相比静基座减小75%以上,将实验中估计出的零偏补偿惯性器件测量信息后,导航解算姿态误差减小65%以上,导航性能得到有效提高。仿真和实验结果表明,所提方法可有效提高精对准精度,并可准确估计惯性器件的零偏。

     

  • 图 1  RIMU的冗余配置

    Figure 1.  Redundant configuration of RIMU

    图 2  转位路径

    Figure 2.  Transposition path

    图 3  双轴旋转精对准仿真结果

    Figure 3.  Simulation results of fine alignment of biaxial rotation

    图 4  静基座精对准仿真结果

    Figure 4.  Simulation results of fine alignment of static base

    图 5  静基座和双轴旋转精对准仿真结果对比

    Figure 5.  Comparison of fine alignment simulation results between static base and biaxial rotation

    图 6  陀螺仪零偏估计和零偏估计误差方差仿真结果

    Figure 6.  Simulation results of zero bias estimation and error variance of zero bias estimation of gyroscope

    图 7  加速度计零偏估计和零偏估计误差方差仿真结果

    Figure 7.  Simulation results of zero bias estimation and error variance of zero bias estimation of accelerometer

    图 8  失准角估计误差方差仿真结果

    Figure 8.  Simulation results of error variance of misalignment angle estimation

    图 9  实验设备及环境

    Figure 9.  Experiment equipment and environment

    图 10  双轴旋转精对准实验结果

    Figure 10.  Experimental results of fine alignment of biaxial rotation

    图 11  静基座精对准实验结果

    Figure 11.  Experimental results of fine alignment of static base

    图 12  静基座和双轴旋转精对准实验结果对比

    Figure 12.  Comparison of fine alignment experimental results between static base and biaxial rotation

    图 13  陀螺仪零偏估计和零偏估计误差方差实验结果

    Figure 13.  Experimental results of zero bias estimation and error variance of zero bias estimation of gyroscope

    图 14  加速度计零偏估计和零偏估计误差方差实验结果

    Figure 14.  Experimental results of zero bias estimation and error variance of zero bias estimation of accelerometer

    图 15  失准角估计误差方差实验结果

    Figure 15.  Experimental results of error variance of misalignment angle estimation

    图 16  导航解算姿态误差

    Figure 16.  Attitude error of navigation solution

    图 17  导航解算速度误差

    Figure 17.  Velocity error of navigation solution

    图 18  导航解算位置误差

    Figure 18.  Position error of navigation solution

    表  1  惯性器件组合方式

    Table  1.   Inertial component combination

    组合方式 惯性器件组1 惯性器件组2 惯性器件组3 惯性器件组4
    组合方式1
    组合方式2
    组合方式3
    组合方式4
    下载: 导出CSV

    表  2  双轴旋转RRINS陀螺仪和加速度计零偏估计仿真结果

    Table  2.   Zero bias estimation simulation results of biaxial rotating RRINS gyroscope and accelemeter

    陀螺仪 零偏估计/((°)·h−1) 加速度计 零偏估计
    理论值 估计值 理论值 估计值
    陀螺仪1 0.1 0.0999 加速度计1 100μg 100.006μg
    陀螺仪2 0.1 0.0999 加速度计2 100μg 99.9117μg
    陀螺仪3 0.1 0.1 加速度计3 100μg 99.9892μg
    陀螺仪4 0.1 0.0999 加速度计4 100μg 100.1900μg
    下载: 导出CSV

    表  3  陀螺仪和加速度计的相关参数

    Table  3.   Related parameters of gyroscope and accelerometer

    陀螺仪参数/((°)·h−1) 加速度计参数
    零偏 零偏稳定性 零偏 零偏稳定性
    −10~+10 ≤0.1 ≤3mg 50μg
    下载: 导出CSV
  • [1] FRUTUOSO A, SILVA F O, DE BARROS E A. Influence of integration schemes and maneuvers on the initial alignment and calibration of AUVs: Observability and degree of observability analyses[J]. Sensors, 2022, 22(9): 3287. doi: 10.3390/s22093287
    [2] 郭银景, 杨文健, 刘珍. 惯性导航初始对准方法研究进展[J]. 电光与控制, 2020, 27(12): 63-68. doi: 10.3969/j.issn.1671-637X.2020.12.014

    GUO Y J, YANG W J, LIU Z. An overview of initial alignment methods in inertial navigation[J]. Electronics Optics & Control, 2020, 27(12): 63-68(in Chinese) . doi: 10.3969/j.issn.1671-637X.2020.12.014
    [3] 罗莉. 水下航行器捷联惯导系统粗对准方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    LUO L. Research on coarse alignment for strapdown inertial navigation system of underwater vehicles[D]. Harbin: Harbin Engineering University, 2017(in Chinese).
    [4] 戴晓强, 赵琳, 史震, 等. 一种冗余惯性导航系统的非线性初始对准模型[J]. 船舶工程, 2012, 34(5): 54-58.

    DAI X Q, ZHAO L, SHI Z, et al. A nonlinear initial alignment model for redundant inertial navigation system[J]. Ship Engineering, 2012, 34(5): 54-58(in Chinese) .
    [5] 李淑影, 卜春光, 王立鹏, 等. 基于无人机的五轴锥形冗余惯导初始对准算法研究[C]//中国航天电子技术研究院科学技术委员会2020年学术年会. 北京:中国航天电子技术研究院, 2020: 404-416.

    LI S Y, BU C G, WANG L P, et al. Research on the initial alignment algorithm of five axis cone redundant inertial navigation based on drones[C]//Proceedings of the Academic Annual Meeting of the Science and Technology Committee of China Academy of Aerospace Electronics Technology. Beijing: China Academy of Aerospace Electronics Technology, 2020: 404-416(in Chinese).
    [6] 王怀鹏, 蔡远文, 辛朝军, 等. 基于旋转调制技术的静基座初始对准方法[J]. 兵器装备工程学报, 2020, 41(7): 128-132. doi: 10.11809/bqzbgcxb2020.07.026

    WANG H P, CAI Y W, XIN C J, et al. Research on initial alignment method based on rotation modulation with static base[J]. Journal of Ordnance Equipment Engineering, 2020, 41(7): 128-132 (in Chinese). doi: 10.11809/bqzbgcxb2020.07.026
    [7] FAN H Y, XIE Y P, WANG Z C, et al. A unified scheme for rotation modulation and self-calibration of dual-axis rotating SINS[J]. Measurement Science and Technology, 2021, 32(11): 115113. doi: 10.1088/1361-6501/ac12ff
    [8] 朱挺, 王丽芬, 王永让, 等. 双轴旋转惯导载体角运动隔离调制方法研究[J]. 仪器仪表学报, 2020, 41(12): 66-75.

    ZHU T, WANG L F, WANG Y R, et al. Carrier angular motion isolation and modulation method of dual-axis rotation inertial navigation system[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 66-75(in Chinese).
    [9] 王超, 史文森, 郭正东, 等. 基于双轴旋转惯导的舰船航向误差动态评估方法[J]. 中国惯性技术学报, 2020, 28(4): 551-555.

    WANG C, SHI W S, GUO Z D, et al. Dynamic evaluation of the heading error of the ship based on two-axis rotation strapdown inertial navigation system[J]. Journal of Chinese Inertial Technology, 2020, 28(4): 551-555(in Chinese) .
    [10] 谢元平, 范会迎, 王子超, 等. 双轴旋转调制捷联惯导系统旋转方案优化设计[J]. 中国惯性技术学报, 2021, 29(4): 421-427.

    XIE Y P, FAN H Y, WANG Z C, et al. Optimization design of rotation scheme for dual-axis rotation-modulation strapdown inertial navigation system[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 421-427(in Chinese) .
    [11] LIU B Q, WEI S H, LU J Z, et al. Fast self-alignment technology for hybrid inertial navigation systems based on a new two-position analytic method[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 3226-3235. doi: 10.1109/TIE.2019.2910045
    [12] WEI D, LI S H, FU Q W. A new initial alignment scheme for dual-axis rotational inertial navigation system[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 8503010.
    [13] 邹涛, 王丽芬, 任元, 等. 冗余旋转惯导系统两位置初始对准方法[J]. 红外与激光工程, 2023, 52(1): 3788.

    ZOU T, WANG L F, REN Y, et al. Two-position initial alignment method for redundant rotating inertial navigation system[J]. Infrared and Laser Engineering, 2023, 52(1): 3788(in Chinese).
    [14] 牟宏杰. 冗余式捷联惯导系统旋转调制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    MOU H J. Research of rotation-modulation method based on redundant strapdown inertial navigation system[D]. Harbin: Harbin Engineering University, 2018(in Chinese).
    [15] 张福斌, 周振华. 一种惯性测量单元非正交安装的单轴转位方法[J]. 中国惯性技术学报, 2017, 25(2): 161-165.

    ZHANG F B, ZHOU Z H. Single-axis rotation modulation for non-orthogonal installation of IMU[J]. Journal of Chinese Inertial Technology, 2017, 25(2): 161-165(in Chinese).
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  79
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 录用日期:  2022-11-11
  • 网络出版日期:  2022-11-21
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答