留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散事件模拟的航站楼运行韧性分析

程国勇 陈实

程国勇,陈实. 基于离散事件模拟的航站楼运行韧性分析[J]. 北京航空航天大学学报,2024,50(11):3310-3318 doi: 10.13700/j.bh.1001-5965.2022.0825
引用本文: 程国勇,陈实. 基于离散事件模拟的航站楼运行韧性分析[J]. 北京航空航天大学学报,2024,50(11):3310-3318 doi: 10.13700/j.bh.1001-5965.2022.0825
CHENG G Y,CHEN S. Terminal operation resilience analysis based on discrete event simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3310-3318 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0825
Citation: CHENG G Y,CHEN S. Terminal operation resilience analysis based on discrete event simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3310-3318 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0825

基于离散事件模拟的航站楼运行韧性分析

doi: 10.13700/j.bh.1001-5965.2022.0825
基金项目: 国家重点研发计划(2021YFB2600500)
详细信息
    通讯作者:

    E-mail:gy_cheng@126.com

  • 中图分类号: U8;V351.17

Terminal operation resilience analysis based on discrete event simulation

Funds: National Key Research and Development Program of China (2021YFB2600500)
More Information
  • 摘要:

    提高航站楼运行韧性是减少偶然事件下人员财产损失、减轻破坏程度、尽快恢复功能的最佳办法。目前,对航站楼缺乏基于运行性能指标时变过程的韧性定量分析理论与技术。基于此,提出综合体现鲁棒性、快速性与系统性能损失的航站楼系统综合韧性指标的航站楼运行韧性理论框架,基于离散事件模拟,得出航站楼运行系统在设备损坏、人员缺席2种扰动情景及不同扰动时间、旅客到达率下的韧性变化规律,并提出提高安检效率及设备冗余率2种韧性提升策略。结果表明:系统鲁棒性指标、性能损失指标均与扰动时间及旅客到达率呈负相关;对于设备损坏和人员缺席2种情景,提升安检效率使系统综合韧性水平分别从原有的0.325、0.054提升至0.834、0.913,提升设备冗余率使系统综合韧性水平从0.22提升至0.638。

     

  • 图 1  航站楼运行韧性三角形

    Figure 1.  Terminal operation resilience triangle

    图 2  仿真区域环境

    Figure 2.  Environment of simulation area

    图 3  旅客离港逻辑

    Figure 3.  Passenger departure logic

    图 4  值机和安检服务用时直方图

    Figure 4.  Histograms of service time of check-in and security check

    图 5  旅客系统时间变化

    Figure 5.  Variation of passenger system time

    图 6  每小时通过旅客数量变化

    Figure 6.  Variation of number of passengers passing through per hour

    图 7  航站楼内旅客数量变化

    Figure 7.  Variation of number of passengers in terminal

    图 8  设备损坏服务用时直方图

    Figure 8.  Histograms of service time for equipment damage

    图 9  人员缺席服务用时直方图

    Figure 9.  Histograms of service time for personnel absence

    图 10  人员缺席情景下旅客系统时间曲线

    Figure 10.  Curves of passenger system time during personnel absence

    图 11  人员缺席情景下系统韧性三角形

    Figure 11.  System resilience triangle during personnel absence

    图 12  鲁棒性指标变化

    Figure 12.  Variation of robustness index

    图 13  性能损失指标变化

    Figure 13.  Variation of performance loss index

    图 14  快速性指标变化

    Figure 14.  Variation of rapidity index

    图 15  综合韧性指标变化

    Figure 15.  Variation of comprehensive resilience index

    图 16  提升安检效率后系统韧性指标变化

    Figure 16.  Variation of system resilience index after improving security check efficiency

    图 17  系统性能指标变化

    Figure 17.  Variation of system performance index

    图 18  系统韧性指标变化

    Figure 18.  Variation of system resilience index

    表  1  仿真区域相关参数

    Table  1.   Relevant parameters of simulation area

    参数数值
    航站楼入口/个5
    自助值机设备/台28
    人工值机设备/台72
    安检通道/条20
    行李安检仪/台40
    仿真区域宽度/m150
    仿真区域长度/m318
    下载: 导出CSV

    表  2  旅客行为相关参数

    Table  2.   Relevant parameters of passenger behavior

    服务流程 参数名称 服务时间/s 产生比例/%
    入口检测 航站楼入口
    爆炸物检测
    uniform(2,3)
    咨询服务 咨询时间 uniform(30,90) 5
    值机服务 是否自助值机 是,20;否,80
    自助值机时间 triangular(30,75,40)
    值机核验时间 uniform(15,20)
    行李是否托运 是,70;否,30
    等待取票时间 uniform(10,15)
    办理行李托运及取票 uniform(30,40)
    行李是否超重或违禁 是,20;否,80
    超重或违禁行李处理 triangular(25,45,30)
    安检服务 核验登机牌及证件 uniform(10,15)
    旅客准备 uniform(10,15)
    人员安检 uniform(30,55)
    行李是否合规 是,85;否,15
    违规行李检查 triangular(25,45,35)
    提取行李 uniform(20,45)
    下载: 导出CSV

    表  3  仿真输出结果对比

    Table  3.   Comparison of simulation output results

    仿真软件 样本数 服务名称 平均服务
    用时/min
    输出
    误差/%
    数据来源
    iGrafx 10000 值机服务 2.51 文献[13]
    AnyLogic 2500 值机服务 2.38 文献[14]
    10000 值机服务 2.36 −5.98
    −0.84
    本文
    20000 安检服务 4.7 文献[15]
    10000 安检服务 4.44 −5.53 本文
    下载: 导出CSV
  • [1] BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752. doi: 10.1193/1.1623497
    [2] CLARK K L, BHATIA U, KODRA E A, et al. Resilience of the U. S. national airspace system airport network[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 3785-3794. doi: 10.1109/TITS.2017.2784391
    [3] 王兴隆, 刘洋. 航空多层网络弹性测度与分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 31-38.

    WANG X L, LIU Y. Resilience measurement and analysis of aviation multi-layer network[J]. Complex Systems and Complexity Science, 2020, 17(2): 31-38(in Chinese).
    [4] 郭九霞. 新一代民航运输系统安全韧性理论与方法研究[D]. 成都: 电子科技大学, 2021.

    GUO J X. Research on safety resilience theory and method for next generation air transportation system[D]. Chengdu: University of Electronic Science and Technology of China, 2021(in Chinese).
    [5] HUANG C N, LIOU J J H, LO H W, et al. Building an assessment model for measuring airport resilience[J]. Journal of Air Transport Management, 2021, 95: 102101. doi: 10.1016/j.jairtraman.2021.102101
    [6] BAO D W, ZHANG X L. Measurement methods and influencing mechanisms for the resilience of large airports under emergency events[J]. Transportmetrica A: Transport Science, 2018, 14(10): 855-880. doi: 10.1080/23249935.2018.1448016
    [7] 黄润建. 基于风险交互分析的4F机场灾害韧性评价研究[D]. 广州: 暨南大学, 2020.

    HUANG R J. Research on 4F airport disaster resilience evaluation based on risk interaction analysis[D]. Guangzhou: Jinan University, 2020(in Chinese).
    [8] 胡明伟, 黄文柯. 行人交通仿真方法与技术[M]. 北京: 清华大学出版社, 2016: 75-79.

    HU M W, HUANG W K. Pedestrian traffic simulation method and technology[M]. Beijing: Tsinghua University Press, 2016: 75-79(in Chinese).
    [9] HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4: 1-23. doi: 10.1146/annurev.es.04.110173.000245
    [10] 欧阳虹彬, 叶强. 弹性城市理论演化述评: 概念、脉络与趋势[J]. 城市规划, 2016, 40(3): 34-42. doi: 10.11819/cpr20160306a

    OUYANG H B, YE Q. A review on the evolution of resilient city theory: Concept, context and tendency[J]. City Planning Review, 2016, 40(3): 34-42(in Chinese). doi: 10.11819/cpr20160306a
    [11] 李明捷. 机场规划与设计[M]. 北京: 中国民航出版社, 2015: 280-282.

    LI M J. Airport planning and design[M]. Beijing: China Civil Aviaiton Press, 2015: 280-282(in Chinese).
    [12] 王加冕, 陶翼飞, 罗俊斌, 等. 基于蒙特卡洛仿真的机场值机系统优化研究[J]. 软件导刊, 2021, 20(8): 82-86. doi: 10.11907/rjdk.202377

    WANG J M, TAO Y F, LUO J B, et al. Optimization of airport check-in system based on Monte Carlo simulation[J]. Software Guide, 2021, 20(8): 82-86(in Chinese). doi: 10.11907/rjdk.202377
    [13] 吴忠君. 航站楼旅客离港服务流程建模与仿真[D]. 哈尔滨: 哈尔滨工业大学, 2013: 61-63.

    WU Z J. The departing service processes in terminal modeling and simulation[D]. Harbin: Harbin Institute of Technology, 2013: 61-63(in Chinese).
    [14] 张浩. 航站楼离港旅客流程仿真及优化研究[D]. 广汉: 中国民用航空飞行学院, 2018: 34-36.

    ZHANG H. Simulation and optimization of passenger flow in terminal building[D]. Guanghan: Civil Aviation Flight University of China, 2018: 34-36(in Chinese).
    [15] 赵振武, 李新源. 基于Anylogic的机场旅客安检流程仿真与优化[J]. 中国民航大学学报, 2018, 36(5): 52-55. doi: 10.3969/j.issn.1674-5590.2018.05.011

    ZHAO Z W, LI X Y. Simulation and optimization of airport passenger security screening process based on Anylogic[J]. Journal of Civil Aviation University of China, 2018, 36(5): 52-55(in Chinese). doi: 10.3969/j.issn.1674-5590.2018.05.011
    [16] COMES T, WARNIER M, FEIL W, et al. Critical airport infrastructure disaster resilience: A framework and simulation model for rapid adaptation[J]. Journal of Management in Engineering, 2020, 36(5): 04020059. doi: 10.1061/(ASCE)ME.1943-5479.0000798
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  70
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 录用日期:  2023-04-22
  • 网络出版日期:  2023-05-05
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答