留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分流板与侧壁缝隙对TBCC排气系统性能影响研究

张世杰 葛建辉 马钊 徐惊雷

张世杰,葛建辉,马钊,等. 分流板与侧壁缝隙对TBCC排气系统性能影响研究[J]. 北京航空航天大学学报,2024,50(11):3553-3565 doi: 10.13700/j.bh.1001-5965.2022.0842
引用本文: 张世杰,葛建辉,马钊,等. 分流板与侧壁缝隙对TBCC排气系统性能影响研究[J]. 北京航空航天大学学报,2024,50(11):3553-3565 doi: 10.13700/j.bh.1001-5965.2022.0842
ZHANG S J,GE J H,MA Z,et al. Influence of gap between splitter plate and side wall on performance of TBCC exhaust system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3553-3565 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0842
Citation: ZHANG S J,GE J H,MA Z,et al. Influence of gap between splitter plate and side wall on performance of TBCC exhaust system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3553-3565 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0842

分流板与侧壁缝隙对TBCC排气系统性能影响研究

doi: 10.13700/j.bh.1001-5965.2022.0842
基金项目: 国家科技重大专项(2019-II-0007-0027);中国博士后科学基金(2022M721598)
详细信息
    通讯作者:

    E-mail:xujl@nuaa.edu.cn

  • 中图分类号: V231.3

Influence of gap between splitter plate and side wall on performance of TBCC exhaust system

Funds: National Science and Technology Major Project of the Ministry of Science and Technology of China (2019-II-0007-0027); China Postdoctoral Science Foundation (2022M721598)
More Information
  • 摘要:

    为研究涡轮基组合循环(TBCC)排气系统的分流板与侧壁之间的缝隙对其性能的影响,利用数值仿真方法研究不同缝隙长度和宽度下喷管性能参数变化规律,针对涡轮通道和冲压通道在不同工作状态下有无缝隙对喷管性能的影响进行研究。结果表明,在喷管双通道均为欠膨胀状态时,分流板与侧壁之间存在缝隙漏气的情况下,对于漏出气体的涡轮通道,随着缝隙长度的增加,其推力系数下降、升力增加,而冲压通道推力系数几乎无变化,但升力增加。缝隙宽度变化对喷管性能的影响与长度的影响规律一致。此外,通过对不同喷管工作状态的研究发现,缝隙的存在会降低推力系数,缝隙的相对宽度为0.033、相对长度为0.31时,2.8%的漏气量能造成超过1%的推力系数的损失。

     

  • 图 1  单边膨胀喷管控制体示意

    Figure 1.  Control body diagram for single-sided expansion nozzle

    图 2  喷管构型

    Figure 2.  Structure of nozzle

    图 3  二次流喷射喷管计算网格

    Figure 3.  Calculation grid of nozzle for secondary flow jet

    图 4  数值仿真与试验的壁面压力分布结果对比

    Figure 4.  Comparison of wall pressure distribution results between numerical simulation and test results

    图 5  对称面处喷管构型

    Figure 5.  Nozzle configuration at symmetric plane

    图 6  计算网格和边界条件设置

    Figure 6.  Calculation grid and boundary condition setting

    图 7  不同网格尺度下涡轮通道上膨胀面的压力分布

    Figure 7.  Pressure distribution on upper expansion plane of turbine channel at different grid scales

    图 8  分流板与侧壁间缝隙结构示意

    Figure 8.  Schematic diagram of the gap structure between splitter plate and the sidewall

    图 9  喷管三维计算网格

    Figure 9.  Three-dimensional calculation grid of nozzle

    图 10  分流板缝隙漏气长度对喷管升力、推力系数的影响

    Figure 10.  Effect of gas leakage length of splitter plate on nozzle lift and thrust coefficient of nozzle

    图 11  涡轮通道声速线

    Figure 11.  Sonic line of turbine channel

    图 12  分流板漏气位置处的流动情况

    Figure 12.  Flow at gas leakage position

    图 13  缝隙中心截面处的马赫数云图

    Figure 13.  Mach number cloud map at center of gap

    图 14  不同长度工况下缝隙中心位置处涡轮通道上膨胀面压力分布

    Figure 14.  Pressure distribution on upper expansion plane of turbine channel at center of gap under different length condition

    图 15  不同长度工况下缝隙中心位置处分流板上壁面压力分布

    Figure 15.  Pressure distribution on upper wall of splitter plate at center of gap under different length condition

    图 16  分流板缝隙漏气宽度对喷管升力、推力系数的影响

    Figure 16.  Effect of gas leakage width of splitter plate on nozzle lift and thrust coefficient of nozzle

    图 17  不同宽度的分流板缝隙中心位置处的马赫数云图

    Figure 17.  Mach number nephogram at the center of the gap in the splitter plate with different widths

    图 18  不同宽度工况下缝隙中心截面上涡轮通道上膨胀面的压力分布

    Figure 18.  Pressure distribution on upper expansion plane of turbine channel at center of gap under different width condition

    图 19  不同宽度工况下缝隙中心截面上分流板上壁面的压力分布

    Figure 19.  Pressure distribution on upper wall of splitter plate at center of gap under different width condition

    图 20  分流板上壁面压力提取位置

    Figure 20.  Extraction position of upper wall pressure of splitter plate

    图 21  分流板上壁面不同位置的压力分布

    Figure 21.  Pressure distribution at different positions of upper wall of splitter plate

    图 22  缝隙中心面上的二维流线图

    Figure 22.  Two-dimensional streamlines on center surface of gap

    表  1  组合喷管边界条件参数

    Table  1.   Parameter setting of boundary condition of combined nozzle

    $P_{\mathrm{tur}}^* $/kPa$P_{\mathrm{ram}}^* $/kPa$T_{\mathrm{tur}}^* $/K$T_{\mathrm{ram}}^* $/KH/km
    185.0145.02 0721 39716.8
    下载: 导出CSV

    表  2  不同分流板缝隙长度下的漏气量

    Table  2.   Gas leakage under different gap lengths of splitter plate

    漏气长度l/Ls 结构 流量/(kg·s−1 漏气量(相对于涡轮流量)/%
    0涡轮0.141 70
    冲压0.065 2
    0.24涡轮0.142 01.54
    冲压0.065 1
    0.31涡轮0.142 72.12
    冲压0.065 1
    0.51涡轮0.145 63.99
    冲压0.065 1
     注:漏气量=泄漏量/涡轮流量×100%。
    下载: 导出CSV

    表  3  喷管各通道壁面压力积分

    Table  3.   Pressure integral of each part of nozzle N

    部位l/Ls=0l/Ls=0.24l/Ls=0.31l/Ls=0.51
    x方向y方向x方向y方向x方向y方向x方向y方向
    冲压通道下壁面−0.12−64.82−0.11−64.89−0.13−64.99−0.12−65.02
    分流板下壁面−0.0483.73−0.0584.53−0.0685.00−0.1086.22
    分流板上壁面−49.04−390.48−48.21−384.70−47.90−382.41−46.90−375.45
    涡轮通道上壁面125.71430.03126.29426.09125.98424.77124.45421.17
    下载: 导出CSV

    表  4  不同分流板缝隙宽度下的漏气量

    Table  4.   Gas leakage under different gap widths of splitter plate

    w/h 结构 流量/(kg·s−1 漏气量
    (相对于涡轮流量)/%
    0涡轮0.141 70
    冲压0.065 2
    0.017涡轮0.143 31.29
    冲压0.065 1
    0.033涡轮0.144 72.88
    冲压0.065 1
    0.047涡轮0.145 63.99
    冲压0.065 1
    下载: 导出CSV

    表  5  4种不同状态边界条件设置

    Table  5.   Boundary conditions for four different states

    工况 $P_{\mathrm{tur}}^* $/kPa $P_{\mathrm{ram}}^* $/kPa $T_{\mathrm{tur}}^* $/K $T_{\mathrm{ram}}^* $/K Pb/kPa
    1 185.0 145.0 2072 1397 9.054
    2 31.7 25.0 1000 800 9.054
    3 185.0 25.0 2072 800 9.054
    4 31.7 145.0 1000 1397 9.054
    下载: 导出CSV

    表  6  不同状态下有无漏气的喷管性能

    Table  6.   Nozzle performance with or without gas leakage under different states

    工况 缝隙宽度 Cfx L/N 漏气量/%
    1 w/h=0 0.938 5 63.07 0
    w/h=0.033 0.925 3 69.31 2.88
    2 w/h=0 0.909 9 −3.34 0
    w/h=0.033 0.898 4 −3.13 2.59
    3 w/h=0 0.930 9 49.15 0
    w/h=0.033 0.9124 51.98 2.88
    4 w/h=0 0.9420 11.61 0
    w/h=0.033 0.9410 11.89 0.26
    下载: 导出CSV
  • [1] 王占学, 刘增文, 王鸣, 等. 涡轮基组合循环发动机技术发展趋势和应用前景[J]. 航空发动机, 2013, 39(3): 12-17. doi: 10.3969/j.issn.1672-3147.2013.03.003

    WANG Z X, LIU Z W, WANG M, et al. Future development and application prospect of turbine based combined cycle engine[J]. Aeroengine, 2013, 39(3): 12-17(in Chinese). doi: 10.3969/j.issn.1672-3147.2013.03.003
    [2] 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798.

    ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798(in Chinese).
    [3] KOBAYASHI H, TANATSUGU N. Optimization method on TSTO spaceplane system powered by airbreather[C]// Proceedings of the 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001: AIAA2001-3965.
    [4] OUZTS P. Mode transition design considerations for an airbreathing combined-cycle hypersonic vehicle[C]// Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008: AIAA2008-2621.
    [5] BULMAN M, SIEBENHAAR A. Combined cycle propulsion: aerojet innovations for practical hypersonic vehicles[C]// Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011: AIAA2011-2397.
    [6] 黄伟, 夏智勋. 美国高超声速飞行器技术研究进展及其启示[J]. 国防科技, 2011, 32(3): 17-20,25. doi: 10.3969/j.issn.1671-4547.2011.03.004

    HUANG W, XIA Z X. Research progress and apocalypses on the American hypersonic vehicle technology[J]. National Defense Science & Technology, 2011, 32(3): 17-20, 25(in Chinese). doi: 10.3969/j.issn.1671-4547.2011.03.004
    [7] 刘晓波, 罗月培, 曾慧, 等. 国外TBCC关键技术及试验设备研究综述[J]. 燃气涡轮试验与研究, 2016, 29(4): 51-56. doi: 10.3969/j.issn.1672-2620.2016.04.011

    LIU X B, LUO Y P, ZENG H, et al. An overview of key technology and test facility for turbine-based combined cycle propulsion study overseas[J]. Gas Turbine Experiment and Research, 2016, 29(4): 51-56(in Chinese). doi: 10.3969/j.issn.1672-2620.2016.04.011
    [8] 徐惊雷. 超燃冲压及TBCC组合循环发动机尾喷管设计方法研究进展[J]. 推进技术, 2018, 39(10): 2236-2251.

    XU J L. Research progress of nozzle design method for scramjet and turbine based combined cycle[J]. Journal of Propulsion Technology, 2018, 39(10): 2236-2251(in Chinese).
    [9] EDWARDS C, SMALL W, WEIDNER J, et al. Studies of scramjet/airframe integration techniques for hypersonic aircraft[C]// Proceedings of the 13th Aerospace Sciences Meeting. Reston: AIAA, 1975.
    [10] DEERE K, ASBURY S. An experimental and computational investigation of a translating throat single expansion-ramp nozzle[C]// Proceedings of the 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996: AIAA1996-2540.
    [11] 庞丽娜, 徐惊雷, 葛建辉. 超燃冲压发动机喷管下唇板可调方案[J]. 航空动力学报, 2015, 30(7): 1685-1690.

    PANG L N, XU J L, GE J H. Scramjet nozzle with adjustable cowl scheme[J]. Journal of Aerospace Power, 2015, 30(7): 1685-1690(in Chinese).
    [12] 葛建辉, 徐惊雷, 庞丽娜, 等. Scramjet尾喷管几何调节方案的计算与实验研究[J]. 推进技术, 2013, 34(9): 1158-1164.

    GE J H, XU J L, PANG L N, et al. CFD and experimental investigation for an adjustable scramjet nozzle[J]. Journal of Propulsion Technology, 2013, 34(9): 1158-1164(in Chinese).
    [13] 杨承宇, 张靖周, 单勇. 单边膨胀喷管红外辐射特性的数值模拟[J]. 航空学报, 2010, 31(10): 1919-1926.

    YANG C Y, ZHANG J Z, SHAN Y. Numerical simulation on infrared radiation characteristics of single expansion ramp nozzles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1919-1926(in Chinese).
    [14] 张堃元, 张荣学, 徐辉. 非对称大膨胀比喷管研究[J]. 推进技术, 2001, 22(5): 380-382. doi: 10.3321/j.issn:1001-4055.2001.05.008

    ZHANG K Y, ZHANG R X, XU H. Investigation of single expansion ramp nozzle[J]. Journal of Propulsion Technology, 2001, 22(5): 380-382(in Chinese). doi: 10.3321/j.issn:1001-4055.2001.05.008
    [15] 刘爱华, 王占学. 二次流喷射对喷管流场性能的影响[J]. 推进技术, 2007, 28(2): 144-147. doi: 10.3321/j.issn:1001-4055.2007.02.008

    LIU A H, WANG Z X. Effect of secondary flow injection on flow field and performance of nozzle[J]. Journal of Propulsion Technology, 2007, 28(2): 144-147(in Chinese). doi: 10.3321/j.issn:1001-4055.2007.02.008
    [16] LV Z, XU J L, MO J W. Numerical investigation of improving the performance of a single expansion ramp nozzle at off-design conditions by secondary injection[J]. Acta Astronautica, 2017, 133: 233-243. doi: 10.1016/j.actaastro.2017.01.013
    [17] 王庆伟, 张相毅, 徐学邈, 等. 射流角度对双缝射流喷管流场影响的研究[J]. 燃气涡轮试验与研究, 2006, 19(4): 27-29, 42. doi: 10.3969/j.issn.1672-2620.2006.04.006

    WANG Q W, ZHANG X Y, XU X M, et al. Investigation on the influence of multiple injection ports in a nozzle for fluidic thrust vectoring[J]. Gas Turbine Experiment and Research, 2006, 19(4): 27-29, 42(in Chinese). doi: 10.3969/j.issn.1672-2620.2006.04.006
    [18] 张相毅, 王如根, 周敏, 等. 单缝和双缝射流注入对二元喷管推力矢量的影响[J]. 推进技术, 2007, 28(6): 629-632. doi: 10.3321/j.issn:1001-4055.2007.06.008

    ZHANG X Y, WANG R G, ZHOU M, et al. Effects of single and dual injection ports on thrust vector for 2D nozzle[J]. Journal of Propulsion Technology, 2007, 28(6): 629-632(in Chinese). doi: 10.3321/j.issn:1001-4055.2007.06.008
    [19] WAITHE K, DEERE K. An experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[C]// Proceedings of the 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: AIAA2003-3802.
  • 加载中
图(22) / 表(6)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  83
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 录用日期:  2023-01-17
  • 网络出版日期:  2023-02-15
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答