留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于传递矩阵法的柔性微定位平台动态特性研究

徐伟胜 许添旗 马慧欣 曹毅

徐伟胜,许添旗,马慧欣,等. 基于传递矩阵法的柔性微定位平台动态特性研究[J]. 北京航空航天大学学报,2024,50(11):3566-3577 doi: 10.13700/j.bh.1001-5965.2022.0845
引用本文: 徐伟胜,许添旗,马慧欣,等. 基于传递矩阵法的柔性微定位平台动态特性研究[J]. 北京航空航天大学学报,2024,50(11):3566-3577 doi: 10.13700/j.bh.1001-5965.2022.0845
XU W S,XU T Q,MA H X,et al. Dynamic characteristics of flexible micro-positioning platforms based on transfer matrix method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3566-3577 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0845
Citation: XU W S,XU T Q,MA H X,et al. Dynamic characteristics of flexible micro-positioning platforms based on transfer matrix method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3566-3577 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0845

基于传递矩阵法的柔性微定位平台动态特性研究

doi: 10.13700/j.bh.1001-5965.2022.0845
基金项目: 国家自然科学基金(51375209);江苏省“六大人才高峰”计划(ZBZZ-012);高等学校学科创新引智计划(B18027);江苏省优秀科技创新团队基金(2019SK07)
详细信息
    通讯作者:

    E-mail:caoyi@jiangnan.edu.cn

  • 中图分类号: V414;TH122

Dynamic characteristics of flexible micro-positioning platforms based on transfer matrix method

Funds: National Natural Science Foundation of China (51375209); The Six Talent Peaks Project in Jiangsu Province (ZBZZ-012); Program of Introducing Talents of Discipline to Universities (B18027); The Excellent Technology Innovation Team Fundation of Jiangsu Province (2019SK07)
More Information
  • 摘要:

    随着精密微定位技术的发展,对柔性微定位平台的动态特性研究越发重要。传递矩阵法(TMM)作为分析多体系统动力学的一种有效方法,具有建模方便、计算精度高等优势。为此,基于传递矩阵法建立微定位平台的动力学模型,以分析其动态特性。介绍传递矩阵法的基本思想并建立柔性机构的传递方程,推导了其在任意激励下的瞬时动力响应;基于柔性铰链和柔性梁设计了一种XY柔性微定位平台并推导出其支链及平台整体的传递矩阵;基于振动理论推导了平台主要特征单元的传递矩阵;最后,为验证理论模型的有效性,分别基于传递矩阵法、有限元法(FEM)及等效质量法(EMM)开展了对该平台固有频率和瞬时动力响应的研究。结果表明:基于传递矩阵法程式化地构建传递矩阵即可分析平台动力学特性,无须建立烦琐的动力学方程;相较于等效质量法,传递矩阵法可计算平台的高阶固有频率;平台固有频率理论值同仿真值最大相对误差仅为2.4%,动力响应理论值与仿真值基本吻合,证明了基于传递矩阵法所建模型的有效性。

     

  • 图 1  并联式微定位平台示意

    Figure 1.  Schematic diagram of Parallel micro-positioning platform

    图 2  单元编号及状态矢量

    Figure 2.  Element number and state vector

    图 3  PPP型柔性支链示意

    Figure 3.  Diagram of PPP-type flexible branch chain

    图 4  二自由度柔性微定位平台

    Figure 4.  2-DOF flexible micro-positioning platform

    图 5  驱动副及单元编号

    Figure 5.  Drive pair and element number

    图 6  被动副及单元编号

    Figure 6.  Passive pair and element number

    图 7  横向与纵向振动的柔性梁模型

    Figure 7.  Flexible beam model of lateral and longitudinal vibrations

    图 8  圆弧形铰链及简化模型

    Figure 8.  Simplified model of circular hinges

    图 9  具有N输入M输出的平面刚性单元

    Figure 9.  Rigid element with N input and M output

    图 10  柔性微定位平台的网格划分

    Figure 10.  Meshing of flexible micro-positioning platform

    图 11  柔性微定位平台1~6阶模态振型

    Figure 11.  Modes of flexible micro-positioning platform at 1~6 orders

    图 12  Ω=100 Hz时平台的动力响应

    Figure 12.  Dynamic response of platform at Ω = 100 Hz

    图 13  Ω=200 Hz时平台的动力响应

    Figure 13.  Dynamic response of platform at Ω = 200 Hz

    表  1  微定位平台结构参数

    Table  1.   Structure parameters of micro-positioning platform mm

    参数 数值 参数 数值
    l1 15 u1 2
    l2 26.8 u2 4
    l3 24 u3 2.5
    s1 21.2 t1 0.3
    s2 15 t2 1.2
    s3 5.7 r 0.7
    s4 27 h 5
    下载: 导出CSV

    表  2  平台固有频率的理论值、仿真值及相对误差

    Table  2.   Theoretical and simulated natural frequencies and relative error

    模态 有限元仿真值/Hz 传递矩阵法/Hz 等效质量法/Hz 相对误差/%
    1阶 196.54 192.67 192.27 2.0
    2阶 196.54 192.67 192.27 2.0
    3阶 487.03 475.62 2.4
    4阶 530.04
    5阶 581.25
    6阶 597.68
     注:相对误差=|(理论值−仿真值)/理论值|×100%。
    下载: 导出CSV
  • [1] HOWELL L L. Compliant mechanisms[M]. New York: Wiley, 2001.
    [2] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13): 53-68. doi: 10.3901/JME.2015.13.053

    YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68(in Chinese). doi: 10.3901/JME.2015.13.053
    [3] 王萍萍, 刘磊. 柔性航天器高精度隔振与定向研究[J]. 宇航学报, 2012, 33(9): 1195-1202.

    WANG P P, LIU L. Research on high accuracy pointing of the flexible spacecraft with Stewart platform[J]. Journal of Astronautics, 2012, 33(9): 1195-1202(in Chinese).
    [4] 刘璟龙, 张崇峰, 邹怀武, 等. 基于干扰观测器的柔性空间机器人在轨精细操作控制方法[J]. 航空学报, 2021, 42(1): 189-199.

    LIU J L, ZHANG C F, ZOU H W, et al. On-orbit precise operation control method for flexible joint space robots based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 189-199(in Chinese).
    [5] ZHANG X Z, XU Q S. Design, fabrication and testing of a novel symmetrical 3-DOF large-stroke parallel micro/nano-positioning stage[J]. Robotics and Computer-Integrated Manufacturing, 2018, 54: 162-172. doi: 10.1016/j.rcim.2017.11.006
    [6] 周睿, 周辉, 桂和利, 等. 基于柔性铰链的二自由度微动平台分析及优化[J]. 北京航空航天大学学报, 2018, 44(9): 1982-1990.

    ZHOU R, ZHOU H, GUI H L, et al. Analysis and optimization of 2-DOF micro-positioning stage based on flexible hinges[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1982-1990(in Chinese).
    [7] LIN C, CUI X H, CHENG K, et al. Design and analysis of 5-DOF micro/nano-positioning stage[J]. Journal of Software, 2012, 7(5): 1038-1044.
    [8] 曹毅, 王保兴, 孟刚, 等. 大行程三平动柔性微定位平台的设计分析及优化[J]. 机械工程学报, 2020, 56(17): 71-81. doi: 10.3901/JME.2020.17.071

    CAO Y, WANG B X, MENG G, et al. Design analysis and optimization of large range spatial translational compliant micro-positioning stage[J]. Journal of Mechanical Engineering, 2020, 56(17): 71-81(in Chinese). doi: 10.3901/JME.2020.17.071
    [9] SCHIAVO F, VIGANÒ L, FERRETTI G. Object-oriented modelling of flexible beams[J]. Multibody System Dynamics, 2006, 15(3): 263-286. doi: 10.1007/s11044-006-9012-8
    [10] XU Q S. Design and implementation of large-range compliant micropositioning systems[M]. New York: Wiley, 2016.
    [11] 于靖军, 毕树生, 宗光华, 等. 基于伪刚体模型法的全柔性机构位置分析[J]. 机械工程学报, 2002, 38(2): 75-78. doi: 10.3321/j.issn:0577-6686.2002.02.017

    YU J J, BI S S, ZONG G H, et al. Kinematics analysis of fully compliant mechanisms using the pseudo-rigid-body model[J]. Chinese Journal of Mechanical Engineering, 2002, 38(2): 75-78(in Chinese). doi: 10.3321/j.issn:0577-6686.2002.02.017
    [12] KOSEKI Y, TANIKAWA T, KOYACHI N, et al. Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method[C]// Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000). Piscataway: IEEE Press, 2002: 786-792.
    [13] LUO Y Q, LIU W Y. Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate[J]. Mechanism and Machine Theory, 2014, 80: 151-165. doi: 10.1016/j.mechmachtheory.2014.06.005
    [14] HOWELL L L, MIDHA A, NORTON T W. Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms[J]. Journal of Mechanical Design, 1996, 118(1): 126-131. doi: 10.1115/1.2826843
    [15] WU S L, SHAO Z X, SU H J, et al. An energy-based approach for kinetostatic modeling of general compliant mechanisms[J]. Mechanism and Machine Theory, 2019, 142: 103588. doi: 10.1016/j.mechmachtheory.2019.103588
    [16] 曹毅, 孟刚, 居勇健, 等. 考虑伴生转动的大行程柔性微定位平台[J]. 航空学报, 2022, 43(7): 456-470. doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207035

    CAO Y, MENG G, JU Y J, et al. Large-stroke compliant micro-positioning stage considering parasitic rotation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 456-470(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207035
    [17] LI Y M, HUANG J M, TANG H. A compliant parallel XY micromotion stage with complete kinematic decoupling[J]. IEEE Transactions on Automation Science and Engineering, 2012, 9(3): 538-553. doi: 10.1109/TASE.2012.2198466
    [18] SCHOTBORGH W O, KOKKELER F G M, TRAGTER H, et al. Dimensionless design graphs for flexure elements and a comparison between three flexure elements[J]. Precision Engineering, 2005, 29(1): 41-47. doi: 10.1016/j.precisioneng.2004.04.003
    [19] 王雯静, 余跃庆. 基于有限元法的柔顺机构动力学分析[J]. 机械工程学报, 2010, 46(9): 79-86. doi: 10.3901/JME.2010.09.079

    WANG W J, YU Y Q. Dynamic analysis of compliant mechanisms based on finite element method[J]. Journal of Mechanical Engineering, 2010, 46(9): 79-86(in Chinese). doi: 10.3901/JME.2010.09.079
    [20] ZHANG Z G, ZHOU X, FANG Z P. Dynamic analysis of compliant mechanisms using absolute nodal coordinate formulation and geometrically exact beam theory[M]// Multibody Dynamics 2019. Cham: Springer International Publishing, 2019: 215-222.
    [21] 芮筱亭. 多体系统传递矩阵法及其应用[M]. 北京: 科学出版社, 2008.

    RUI X T. Transfer matrix method of multibody system and its applications[M]. Beijing: Science Press, 2008(in Chinese).
    [22] RUI X T, WANG X, ZHOU Q B, et al. Transfer matrix method for multibody systems (Rui method) and its applications[J]. Science China Technological Sciences, 2019, 62(5): 712-720. doi: 10.1007/s11431-018-9425-x
    [23] 郑洋洋, 宫金良, 张彦斐. 基于传递矩阵法的柔性杠杆放大机构刚度分析[J]. 北京航空航天大学学报, 2017, 43(4): 849-856.

    ZHENG Y Y, GONG J L, ZHANG Y F. Stiffness analysis of a flexible lever magnifying mechanism based on transfer matrix method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 849-856(in Chinese).
    [24] 姚颂, 芮筱亭, 王景弘. 直升机悬停状态下的振动计算[J]. 哈尔滨工业大学学报, 2021, 53(6): 104-111. doi: 10.11918/201908100

    YAO S, RUI X T, WANG J H. Calculation of helicopter vibration in hovering state[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 104-111(in Chinese). doi: 10.11918/201908100
    [25] DU Y S, LI T M, GAO G H. Dynamic analysis of a flexure-based compliant stage[J]. Journal of Mechanical Science and Technology, 2018, 32(11): 5223-5231. doi: 10.1007/s12206-018-1020-0
    [26] HU J F, WEN T, HE J K. Dynamics of compliant mechanisms using transfer matrix method[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(11): 2173-2189. doi: 10.1007/s12541-020-00395-9
    [27] WANG T W, LI Y Z, ZHANG Y X, et al. Design of a flexure-based parallel XY micropositioning stage with millimeter workspace and high bandwidth[J]. Sensors and Actuators A: Physical, 2021, 331: 112899. doi: 10.1016/j.sna.2021.112899
    [28] HOPKINS J B, CULPEPPER M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT)–Part I: Principles[J]. Precision Engineering, 2010, 34(2): 259-270. doi: 10.1016/j.precisioneng.2009.06.008
    [29] LING M X, CAO J Y, HOWELL L L, et al. Kinetostatic modeling of complex compliant mechanisms with serial-parallel substructures: a semi-analytical matrix displacement method[J]. Mechanism and Machine Theory, 2018, 125: 169-184. doi: 10.1016/j.mechmachtheory.2018.03.014
    [30] LING M X, CAO J Y, PEHRSON N. Kinetostatic and dynamic analyses of planar compliant mechanisms via a two-port dynamic stiffness model[J]. Precision Engineering, 2019, 57: 149-161. doi: 10.1016/j.precisioneng.2019.04.004
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  107
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-15
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答