-
摘要:
脉冲多普勒引信在受到扫频式干扰时,引信接收机信道被干扰信号饱和从而导致引信出现早炸或瞎火。脉冲多普勒引信通过波形设计及多维度特征识别可以避免因干扰信号而错误启动,但如何在扫频式干扰压制下检测真实目标仍是一个难题。针对上述问题,建立了扫频式干扰作用下脉冲多普勒引信中频信号模型,并提出了基于信号变分分解的引信抗扫频式干扰方法。所提方法利用全变分正则化将中频信号分解为脉冲、低频正弦波和高频噪声3个分量,保留并处理对应目标回波信号的脉冲分量即可检测真实目标。通过仿真验证了方法的有效性,结果表明:所提方法在0~20 dB的干信比条件下仍能有效分离目标回波及干扰信号,大大提高了脉冲多普勒引信在扫频式干扰作用下的目标检测能力。
Abstract:The pulse Doppler fuze experiences sweep-jamming when the jamming signal overloads the receiver channel, causing the fuze to misfire or detonate prematurely. At present, pulse Doppler fuze can avoid false start due to jamming signal by waveform design and multi-dimensional feature recognition, but how to detect the real target under sweep-jamming is still a difficult problem. Aiming at the above problem, the intermediate frequency signal model of pulse Doppler fuze under sweep-jamming is established, and the method of fuze anti-jamming based on signal variational decomposition is proposed. The method uses total variation regularization to decompose the intermediate frequency signal into three components: pulse, low-frequency sine wave and high-frequency noise, and the pulse is retained and processed to detect the real target. The effectiveness of the method is verified by simulation. The findings demonstrate that, even in situations where the jamming signal ratio is between 0 and 20 dB, the approach can still successfully differentiate the target echo and jamming signal. It can also significantly enhance the pulse Doppler fuze's capacity for target recognition in sweep-jamming scenarios.
-
表 1 脉冲多普勒引信及干扰机参数
Table 1. Simulation parameters of pulse doppler fuze and jammer parameters
载波频率/MHz 采样频率/GHz 采样时间/μs 脉宽/ns 脉冲周期/μs 扫频起始频率/MHz 扫描带宽/MHz 扫描点数 驻留时间/μs 干信比/dB 200 2 11 50 1 190 20 10 1 0 -
[1] 梁棠文, 李玉清, 蒲开忠, 等. 防空导弹引信设计及仿真技术[M]. 北京: 宇航出版社, 1995: 199-250.LIANG T W, LI Y Q, PU K Z, et al. Design and simulation technology of fuze for air defense missile[M]. Beijing: China Astronautic Publishing House, 1995: 199-250(in Chinese). [2] 崔占忠, 宋世和, 徐立新. 近炸引信原理[M]. 第3版. 北京: 北京理工大学出版社, 2009: 112-119.CUI Z Z, SONG S H, XU L X. Principle of proximity fuze[M]. 3rd ed. Beijing: Beijing Insititute of Technology Press, 2009: 112-119(in Chinese). [3] 赵惠昌. 无线电引信设计原理与方法[M]. 北京: 国防工业出版社, 2012: 153-162.ZHAO H C. Fundamentals and methodology of radio fuze[M]. Beijing: National Defense Industry Press, 2012: 153-162(in Chinese). [4] ANDREW D, WILLIAM O. ALQ-218(V)(ICAP III)[J]. Electronic Warfare Forecast, 2007(4): 24-29. [5] 张旭东, 郑世举, 余德瑛. 国外无线电引信干扰机的发展状况[J]. 制导与引信, 2004, 25(4): 22-25. doi: 10.3969/j.issn.1671-0576.2004.04.006ZHANG X D, ZHENG S J, YU D Y. The development of radio fuze jammer abroad[J]. Guidance & Fuze, 2004, 25(4): 22-25(in Chinese). doi: 10.3969/j.issn.1671-0576.2004.04.006 [6] 谭显裕. 国外机载电子干扰吊舱的现状及发展[J]. 现代防御技术, 2004, 32(2): 66-72. doi: 10.3969/j.issn.1009-086X.2004.02.014TAN X Y. Current situation and development about airborne electronic jamming pod abroad[J]. Modern Defence Technology, 2004, 32(2): 66-72(in Chinese). doi: 10.3969/j.issn.1009-086X.2004.02.014 [7] 刘少坤, 闫晓鹏, 栗苹, 等. 脉冲多普勒引信抗周期调制干扰性能研究[J]. 北京航空航天大学学报, 2018, 44(5): 1018-1025.LIU S K, YAN X P, LI P, et al. Anti-periodic modulation jamming performance of pulse Doppler fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1018-1025(in Chinese). [8] 李泽, 栗苹, 郝新红, 等. 脉冲多普勒引信抗有源噪声干扰性能研究[J]. 兵工学报, 2015, 36(6): 1001-1008. doi: 10.3969/j.issn.1000-1093.2015.06.006LI Z, LI P, HAO X H, et al. Anti-active noise jamming performance of pulse Doppler fuze[J]. Acta Armamentarii, 2015, 36(6): 1001-1008(in Chinese). doi: 10.3969/j.issn.1000-1093.2015.06.006 [9] 于洪海, 闫晓鹏, 贾瑞丽, 等. M序列伪码调相脉冲多普勒引信抗干扰性能研究[J]. 兵工学报, 2020, 41(3): 417-425. doi: 10.3969/j.issn.1000-1093.2020.03.001YU H H, YAN X P, JIA R L, et al. Research on anti-jamming performance of M-sequence pseudo-random code phase modulation pulse Doppler fuze[J]. Acta Armamentarii, 2020, 41(3): 417-425(in Chinese). doi: 10.3969/j.issn.1000-1093.2020.03.001 [10] DAI J, HAO X H, LI Z, et al. Adaptive target and jamming recognition for the pulse Doppler radar fuze based on a time-frequency joint feature and an online-updated naive Bayesian classifier with minimal risk[J]. Defence Technology, 2022, 18(3): 457-466. doi: 10.1016/j.dt.2021.02.008 [11] 代健, 李泽, 郝新红, 等. 基于目标联合特征提取的脉冲多普勒引信抗干扰方法[J]. 兵工学报, 2019, 40(2): 225-233.DAI J, LI Z, HAO X H, et al. Anti-jamming method for pulse Doppler fuze based on joint feature extraction of target signal[J]. Acta Armamentarii, 2019, 40(2): 225-233(in Chinese). [12] 陈齐乐, 郝新红, 闫晓鹏, 等. 基于谐波系数幅值平均的复合调制引信抗扫频式干扰方法[J]. 北京航空航天大学学报, 2020, 46(7): 1317-1324.CHEN Q L, HAO X H, YAN X P, et al. Anti sweep jamming method of hybrid modulation fuze based on harmonic coefficient amplitude averaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1317-1324(in Chinese). [13] DAUBECHIES I, LU J F, WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261. doi: 10.1016/j.acha.2010.08.002 [14] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454(1971): 903-998. doi: 10.1098/rspa.1998.0193 [15] CONDAT L. A direct algorithm for 1-D total variation denoising[J]. IEEE Signal Processing Letters, 2013, 20(11): 1054-1057. doi: 10.1109/LSP.2013.2278339 [16] SELESNICK I, LANZA A, MORIGI S, et al. Non-convex total variation regularization for convex denoising of signals[J]. Journal of Mathematical Imaging and Vision, 2020, 62(6): 825-841. [17] CICONE A. Iterative filtering as a direct method for the decomposition of nonstationary signals[J]. Numerical Algorithms, 2020, 85(3): 811-827. doi: 10.1007/s11075-019-00838-z