留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于椭圆方向和半轴长度的多伯努利扩展目标跟踪

孙可 胡青霜 郑翔飞 吴孙勇

孙可,胡青霜,郑翔飞,等. 基于椭圆方向和半轴长度的多伯努利扩展目标跟踪[J]. 北京航空航天大学学报,2024,50(11):3367-3376 doi: 10.13700/j.bh.1001-5965.2022.0869
引用本文: 孙可,胡青霜,郑翔飞,等. 基于椭圆方向和半轴长度的多伯努利扩展目标跟踪[J]. 北京航空航天大学学报,2024,50(11):3367-3376 doi: 10.13700/j.bh.1001-5965.2022.0869
SUN K,HU Q S,ZHENG X F,et al. Multi-Bernoulli extended target tracking based on orientation and half axes lengths of an ellipse[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3367-3376 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0869
Citation: SUN K,HU Q S,ZHENG X F,et al. Multi-Bernoulli extended target tracking based on orientation and half axes lengths of an ellipse[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3367-3376 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0869

基于椭圆方向和半轴长度的多伯努利扩展目标跟踪

doi: 10.13700/j.bh.1001-5965.2022.0869
基金项目: 国家自然科学基金(62263007,62061010,62161007);广西科技厅项目(AA19182007);广西密码学与信息安全重点实验室研究课题资助(GCIS202132);桂林电子科技大学数学与计算科学学院研究生创新项目(2022YJSCX02);桂林电子科技大学研究生教育创新计划(2022YCXS145)
详细信息
    通讯作者:

    E-mail:wusunyong121991@163.com

  • 中图分类号: V221+.3;TN953

Multi-Bernoulli extended target tracking based on orientation and half axes lengths of an ellipse

Funds: National Natural Science Foundation of China (62263007,62061010,62161007); Guangxi Science and Technology Department Project (AA19182007); Supported by Guangxi Key Laboratory of Cryptography and Information Security (GCIS202132); Graduate Innovation Program of School of Mathematics and Computing Science, Guilin University of Electronic Science and Technology (2022YJSCX02); Innovation Project of Guilin University of Electronic Science and Technology Graduate Education (2022YCXS145)
More Information
  • 摘要:

    针对杂波环境下扩展目标外形难以估计、新生目标先验信息未知等问题,在扩展目标势均衡多目标多伯努利(ET-CBMeMBer)滤波器的基础上,开展基于椭圆方向和半轴长度(OAL)的参数化多扩展目标跟踪研究。借助乘性噪声构造考虑目标空间信息的显式量测方程,并推导OAL-CBMeMBer滤波器高斯混合实现的封闭形式解;基于显式的量测方程,利用已知的量测数据自适应构造考虑了质心位置和外形状态的新生目标先验信息,并提出自适应新生OAL-CBMeMBer滤波器。仿真实验结果表明:所提OAL-CBMeMBer滤波器提高了目标数目和状态的估计精度,能够有效地对多扩展目标进行跟踪。

     

  • 图 1  利用已知量测构建的椭圆

    Figure 1.  Ellipse constructed with known measurements

    图 2  真实运动轨迹

    Figure 2.  Real motion trajectory

    图 3  平均目标个数估计

    Figure 3.  Average target number estimation

    图 4  平均PMOSPA误差

    Figure 4.  Average PMOSPA error

    图 5  平均目标个数估计

    Figure 5.  Average target number estimation

    图 6  平均PMOSPA误差

    Figure 6.  Average PMOSPA error

    表  1  场景目标初始状态及存活时间

    Table  1.   Initial state and survival time of the scenario target

    目标 质心状态 外形状态 出现时刻/s 消失时刻/s
    目标1 [−1000,−1000,14,10] [0,15,35] 1 90
    目标2 [−1000,1000,15,−20] [0,15,30] 10 100
    目标3 [1000,−1000,−11,−15] [0,15,35] 20 70
    目标4 [1000,1000,18,−13] [0,15,30] 30 100
    目标5 [1000,1000,−10,−13] [0,10,20] 40 80
    目标6 [1000,−1000,18,11] [0,15,30] 50 100
    下载: 导出CSV
  • [1] MAHLER R P S. Statistical multisource-multitarget information fusion[M]. Boston: Artech House, 2007.
    [2] MAHLER R P S. Advances in statistical multisource-multitarget information fusion[M]. Boston: Artech House, 2014.
    [3] MAHLER R P. PHD filters for nonstandard targets, Ⅰ: Extended targets[C]//Proceedings of the 12th International Conference on Information Fusion. Piscataway: IEEE Press, 2009: 915-921.
    [4] GRANSTRÖM K, LUNDQUIST C, ORGUNER O. Extended target tracking using a Gaussian-mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286. doi: 10.1109/TAES.2012.6324703
    [5] ORGUNER U, LUNDQUIST C, GRANSTRÖM K. Extended target tracking with a cardinalized probability hypothesis density filter[C]//Proceedings of the 14th International Conference on Information Fusion. Piscataway: IEEE Press, 2011: 1-8.
    [6] 连峰, 马冬冬, 元向辉, 等. 扩展目标CBMeMBer滤波器及其高斯混合实现[J]. 控制与决策, 2015, 30(4): 611-616.

    LIAN F, MA D D, YUAN X H, et al. CBMeMBer filter for extended targets and its Gaussian mixture implementations[J]. Control and Decision, 2015, 30(4): 611-616(in Chinese).
    [7] 单博炜, 杨小军. 基于随机有限集的多扩展目标跟踪研究进展[J]. 控制与决策, 2017, 32(6): 961-966.

    SHAN B W, YANG X J. Development of multiple extended object tracking based on random finite set[J]. Control and Decision, 2017, 32(6): 961-966(in Chinese).
    [8] GRANSTRÖM K, BAUM M. A tutorial on multiple extended object tracking[EB/OL]. (2022-02-10) [2022-10-11]. https://doi.org/10.36227/techrxiv.19115858.v1.
    [9] LI M K, LAN J, LI X R. Tracking of elliptical extended object with unknown but fixed lengths of axes[C]//Proceedings of the IEEE 23rd International Conference on Information Fusion. Piscataway: IEEE Press, 2020: 1-8.
    [10] KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059. doi: 10.1109/TAES.2008.4655362
    [11] GRANSTRÖM K, ORGUNER U. On spawning and combination of extended/group targets modeled with random matrices[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 678-692. doi: 10.1109/TSP.2012.2230171
    [12] LUNDQUIST C, GRANSTRÖM K, ORGUNER U. An extended target CPHD filter and a gamma Gaussian inverse wishart implementation[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 472-483. doi: 10.1109/JSTSP.2013.2245632
    [13] BAUM M, NOACK B, HANEBECK U D. Extended object and group tracking with elliptic random hypersurface models[C]//Proceedings of the 13th International Conference on Information Fusion. Piscataway: IEEE Press, 2010: 1-8.
    [14] BAUM M, HANEBECK U D. Extended object tracking with random hypersurface models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 149-159. doi: 10.1109/TAES.2013.120107
    [15] 李翠芸, 林锦鹏, 姬红兵. 一种基于椭圆RHM的扩展目标Gamma高斯混合CPHD滤波器[J]. 控制与决策, 2015, 30(9): 1551-1558.

    LI C Y, LIN J P, JI H B. A Gamma Gaussian-mixture CPHD filter based on ellipse random hypersurface models for extended targets[J]. Control and Decision, 2015, 30(9): 1551-1558(in Chinese).
    [16] YANG S S, BAUM M. Tracking the orientation and axes lengths of an elliptical extended object[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4720-4729. doi: 10.1109/TSP.2019.2929462
    [17] YANG S S, TEICH F, BAUM M. Network flow labeling for extended target tracking PHD filters[J]. IEEE Transactions on Industrial Informatics, 2019, 15(7): 4164-4171. doi: 10.1109/TII.2019.2898992
    [18] RISTIC B, CLARK D, VO B N, et al. Adaptive target birth intensity for PHD and CPHD filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668. doi: 10.1109/TAES.2012.6178085
    [19] REUTER S, MEISSNER D, WILKING B, et al. Cardinality balanced multi-target multi-Bernoulli filtering using adaptive birth distributions[C]//Proceedings of the 16th International Conference on Information Fusion. Piscataway: IEEE Press, 2013: 1608-1615.
    [20] WU S Y, ZHOU Y S, XIE Y, et al. Robust poisson multi-Bernoulli mixture filter using adaptive birth distributions for extended targets[J]. Digital Signal Processing, 2022, 126: 103459. doi: 10.1016/j.dsp.2022.103459
    [21] 甘林海, 王刚, 刘进忙, 等. 群目标跟踪技术综述[J]. 自动化学报, 2020, 46(3): 411-426.

    GAN L H, WANG G, LIU J M, et al. An overview of group target tracking[J]. Acta Automatica Sinica, 2020, 46(3): 411-426(in Chinese).
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  91
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2023-02-24
  • 网络出版日期:  2023-04-14
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答