Multi-Bernoulli extended target tracking based on orientation and half axes lengths of an ellipse
-
摘要:
针对杂波环境下扩展目标外形难以估计、新生目标先验信息未知等问题,在扩展目标势均衡多目标多伯努利(ET-CBMeMBer)滤波器的基础上,开展基于椭圆方向和半轴长度(OAL)的参数化多扩展目标跟踪研究。借助乘性噪声构造考虑目标空间信息的显式量测方程,并推导OAL-CBMeMBer滤波器高斯混合实现的封闭形式解;基于显式的量测方程,利用已知的量测数据自适应构造考虑了质心位置和外形状态的新生目标先验信息,并提出自适应新生OAL-CBMeMBer滤波器。仿真实验结果表明:所提OAL-CBMeMBer滤波器提高了目标数目和状态的估计精度,能够有效地对多扩展目标进行跟踪。
-
关键词:
- 多扩展目标 /
- 势平衡多目标多伯努利滤波器 /
- 椭圆方向 /
- 椭圆半轴长度 /
- 自适应新生
Abstract:The problem that the shape of the extended target is hard to estimate and the newborn target's prior information is unknown in the clutter environment is solved in this paper by using the extended targets-cardinality balance multi-target and multi-Bernoulli (ET-CBMeMBer) filter. This parameterized multi-extended target tracking algorithm is based on the orientation and half axes lengths of an ellipse (OAL). Considering the spatial information of the target, an explicit measurement equation is constructed by multiplicative noise, and the closed-form solution implemented by the Gaussian mixture of the OAL-CBMeMBer filter is deduced. Based on the explicit measurement equation, the prior information of the newborn target that considers the position of the centroid and the shape state is adaptively constructed by employing the known measurement data, and the adaptive OAL-CBMeMBer filter is proposed. The proposed OAL-CBMeMBer filter can effectively track numerous extended targets and increases the estimation accuracy of target number and state, according to simulation findings.
-
表 1 场景目标初始状态及存活时间
Table 1. Initial state and survival time of the scenario target
目标 质心状态 外形状态 出现时刻/s 消失时刻/s 目标1 [− 1000 ,−1000 ,14,10][0,15,35] 1 90 目标2 [− 1000 ,1000 ,15,−20][0,15,30] 10 100 目标3 [ 1000 ,−1000 ,−11,−15][0,15,35] 20 70 目标4 [ 1000 ,1000 ,18,−13][0,15,30] 30 100 目标5 [ 1000 ,1000 ,−10,−13][0,10,20] 40 80 目标6 [ 1000 ,−1000 ,18,11][0,15,30] 50 100 -
[1] MAHLER R P S. Statistical multisource-multitarget information fusion[M]. Boston: Artech House, 2007. [2] MAHLER R P S. Advances in statistical multisource-multitarget information fusion[M]. Boston: Artech House, 2014. [3] MAHLER R P. PHD filters for nonstandard targets, Ⅰ: Extended targets[C]//Proceedings of the 12th International Conference on Information Fusion. Piscataway: IEEE Press, 2009: 915-921. [4] GRANSTRÖM K, LUNDQUIST C, ORGUNER O. Extended target tracking using a Gaussian-mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286. doi: 10.1109/TAES.2012.6324703 [5] ORGUNER U, LUNDQUIST C, GRANSTRÖM K. Extended target tracking with a cardinalized probability hypothesis density filter[C]//Proceedings of the 14th International Conference on Information Fusion. Piscataway: IEEE Press, 2011: 1-8. [6] 连峰, 马冬冬, 元向辉, 等. 扩展目标CBMeMBer滤波器及其高斯混合实现[J]. 控制与决策, 2015, 30(4): 611-616.LIAN F, MA D D, YUAN X H, et al. CBMeMBer filter for extended targets and its Gaussian mixture implementations[J]. Control and Decision, 2015, 30(4): 611-616(in Chinese). [7] 单博炜, 杨小军. 基于随机有限集的多扩展目标跟踪研究进展[J]. 控制与决策, 2017, 32(6): 961-966.SHAN B W, YANG X J. Development of multiple extended object tracking based on random finite set[J]. Control and Decision, 2017, 32(6): 961-966(in Chinese). [8] GRANSTRÖM K, BAUM M. A tutorial on multiple extended object tracking[EB/OL]. (2022-02-10) [2022-10-11]. https://doi.org/10.36227/techrxiv.19115858.v1. [9] LI M K, LAN J, LI X R. Tracking of elliptical extended object with unknown but fixed lengths of axes[C]//Proceedings of the IEEE 23rd International Conference on Information Fusion. Piscataway: IEEE Press, 2020: 1-8. [10] KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059. doi: 10.1109/TAES.2008.4655362 [11] GRANSTRÖM K, ORGUNER U. On spawning and combination of extended/group targets modeled with random matrices[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 678-692. doi: 10.1109/TSP.2012.2230171 [12] LUNDQUIST C, GRANSTRÖM K, ORGUNER U. An extended target CPHD filter and a gamma Gaussian inverse wishart implementation[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 472-483. doi: 10.1109/JSTSP.2013.2245632 [13] BAUM M, NOACK B, HANEBECK U D. Extended object and group tracking with elliptic random hypersurface models[C]//Proceedings of the 13th International Conference on Information Fusion. Piscataway: IEEE Press, 2010: 1-8. [14] BAUM M, HANEBECK U D. Extended object tracking with random hypersurface models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 149-159. doi: 10.1109/TAES.2013.120107 [15] 李翠芸, 林锦鹏, 姬红兵. 一种基于椭圆RHM的扩展目标Gamma高斯混合CPHD滤波器[J]. 控制与决策, 2015, 30(9): 1551-1558.LI C Y, LIN J P, JI H B. A Gamma Gaussian-mixture CPHD filter based on ellipse random hypersurface models for extended targets[J]. Control and Decision, 2015, 30(9): 1551-1558(in Chinese). [16] YANG S S, BAUM M. Tracking the orientation and axes lengths of an elliptical extended object[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4720-4729. doi: 10.1109/TSP.2019.2929462 [17] YANG S S, TEICH F, BAUM M. Network flow labeling for extended target tracking PHD filters[J]. IEEE Transactions on Industrial Informatics, 2019, 15(7): 4164-4171. doi: 10.1109/TII.2019.2898992 [18] RISTIC B, CLARK D, VO B N, et al. Adaptive target birth intensity for PHD and CPHD filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668. doi: 10.1109/TAES.2012.6178085 [19] REUTER S, MEISSNER D, WILKING B, et al. Cardinality balanced multi-target multi-Bernoulli filtering using adaptive birth distributions[C]//Proceedings of the 16th International Conference on Information Fusion. Piscataway: IEEE Press, 2013: 1608-1615. [20] WU S Y, ZHOU Y S, XIE Y, et al. Robust poisson multi-Bernoulli mixture filter using adaptive birth distributions for extended targets[J]. Digital Signal Processing, 2022, 126: 103459. doi: 10.1016/j.dsp.2022.103459 [21] 甘林海, 王刚, 刘进忙, 等. 群目标跟踪技术综述[J]. 自动化学报, 2020, 46(3): 411-426.GAN L H, WANG G, LIU J M, et al. An overview of group target tracking[J]. Acta Automatica Sinica, 2020, 46(3): 411-426(in Chinese).