留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超飞行器热化学非平衡及稀薄滑移流动模拟

李鹏 陈坚强 丁明松 梅杰 江涛 董维中

李鹏,陈坚强,丁明松,等. 高超飞行器热化学非平衡及稀薄滑移流动模拟[J]. 北京航空航天大学学报,2024,50(11):3391-3401 doi: 10.13700/j.bh.1001-5965.2022.0870
引用本文: 李鹏,陈坚强,丁明松,等. 高超飞行器热化学非平衡及稀薄滑移流动模拟[J]. 北京航空航天大学学报,2024,50(11):3391-3401 doi: 10.13700/j.bh.1001-5965.2022.0870
LI P,CHEN J Q,DING M S,et al. Simulaton of therochemical nonequilibrium and rarefied-slip flows for hypersonic flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3391-3401 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0870
Citation: LI P,CHEN J Q,DING M S,et al. Simulaton of therochemical nonequilibrium and rarefied-slip flows for hypersonic flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3391-3401 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0870

高超飞行器热化学非平衡及稀薄滑移流动模拟

doi: 10.13700/j.bh.1001-5965.2022.0870
基金项目: 国家数值风洞工程项目;国家重点研发计划(2019YFA0405203)
详细信息
    通讯作者:

    E-mail:chenjq@cardc.cn

  • 中图分类号: V19

Simulaton of therochemical nonequilibrium and rarefied-slip flows for hypersonic flight vehicles

Funds: National Numerical Windtunnel Project; National Key Research and Development Program (2019YFA0405203)
More Information
  • 摘要:

    稀薄滑移效应对高超飞行器气动特性产生重要影响。基于HyFLOW软件构建适用于热化学非平衡流动模拟的速度滑移和温度滑移边界条件,同时分别选取猎户座(Orion)飞船返回舱、OREX试验飞行器及类“哥伦比亚号”(OV102)航天飞机等典型高超飞行器,开展稀薄滑移流动模拟及其相关气动特性预测分析。研究表明:HyFLOW软件的稀薄滑移边界模型计算可靠,在预测热化学非平衡及稀薄滑移耦合效应相关的气动力、气动热特性方面具有较高的计算精度,能够满足工程复杂外形的仿真应用需求;稀薄滑移效应可显著降低热流峰值和减小热流峰值分布区域大小,相比于无滑移条件,其在类OV102航天飞机外形中预测的头部热流峰值最大降低了约45%,机翼前缘热流峰值最大降低了约20%。

     

  • 图 1  Orion飞船返回舱计算网格

    Figure 1.  Sketch of structured grid for Orion reentry capsule

    图 2  Orion飞船返回舱在H=85 km条件下激波位置对比

    Figure 2.  Comparison of shock location for Orion reentry capsule at H=85 km

    图 3  H=85 km,Tw=1 184 K时,壁面滑移参数分布

    Figure 3.  Distribution of slip parameters on surface in H=85 km, Tw=1 184 K

    图 4  H=85 km,Tw=1 184 K时,壁面热流分布对比

    Figure 4.  Comparison of flux components on wall surface in H=85 km, Tw=1 184 K

    图 5  Orion飞船返回舱不同高度下计算驻点热流对比

    Figure 5.  Comparison of computed stagnation point heat flux at different altitude for Orion reentry capsule

    图 6  OREX试验飞行器计算网格

    Figure 6.  Structured grid for OREX experiment flight vehicle

    图 7  OREX试验飞行器壁面压强对比

    Figure 7.  Comparison of computed pressure on surface for OREX experiment flight vehicle

    图 8  OREX试验飞行器壁面热流对比

    Figure 8.  Comparison of computed heat flux on surface for OREX experiment flight vehicle

    图 9  OREX试验飞行器不同高度下计算驻点热流对比

    Figure 9.  Comparison of computed stagnation point heat flux at different altitude for OREX experiment flight vehicle

    图 10  类OV-102航天飞机模型

    Figure 10.  OV-102-like space shuttle model

    图 11  类OV-102航天飞机模型的计算网格

    Figure 11.  Sketch of structured grid for OV-102-like space shuttle orbiter configuration

    图 12  迎风面中心线热流分布

    Figure 12.  Heat flux profile along the center line of the windward side

    图 13  壁面处Kn等值线分布

    Figure 13.  Contour of Kn contours on wall surface

    图 14  壁面热流等值线云图

    Figure 14.  Contour of heating rate on wall surface

    图 15  H=89.95 km时,剖面曲线上热流分布对比

    Figure 15.  Comparisons of heat flux on profile curves at H=89.95 km

    图 16  H=96.09 km时,剖面曲线上热流分布对比

    Figure 16.  Comparisons of heat flux on the profile curves at H=96.09 km

    表  1  再入过程典型飞行条件

    Table  1.   Typical flight conditions of reentry process

    高度[21]/km 迎角[21]/(°) 速度[21]/(m·s−1) 密度[21]/(kg·m−3) 静温[21]/K 壁温[21]/K O质量分数 O2质量分数 N2质量分数
    103.14 39.86 7675.57 3.2197×10−7 202.638 322.0 0.0313 0.1864 0.7823
    96.09 39.81 7663.61 1.1431×10−6 189.395 464.0 0.0104 0.2193 0.7703
    89.95 39.78 7648.45 3.4468×10−6 186.867 660.0 0.0018 0.2302 0.7680
    85.70 41.00 7530.00 7.3160×10−6 187.460 852.0 0 0.2330 0.7670
    77.90 40.20 7420.00 2.5630×10−5 202.740 1005.0 0 0.2330 0.7670
    下载: 导出CSV

    表  2  全机气动力特性参数对比

    Table  2.   Comparisons of total aerodynamic forces

    高度/km 升力系数CL CL偏差/% 阻力系数CD CD偏差/% 俯仰力矩系数CY CY偏差/%
    无滑移 滑移 无滑移 滑移 无滑移 滑移
    103.14 0.7413 0.7414 0.01 1.1931 1.1907 −0.20 0.091891 0.108430 18.00
    96.09 0.7942 0.7949 0.09 0.9824 0.9787 −0.38 0.089040 0.089720 0.76
    89.95 0.8230 0.8230 0.00 0.8947 0.8936 −0.12 0.084506 0.084442 −0.08
    85.70 0.8778 0.8771 −0.08 0.8930 0.8918 −0.13 0.088543 0.088322 −0.25
    77.90 0.8670 0.8670 0.00 0.8380 0.8377 −0.04 0.078104 0.078040 −0.08
    下载: 导出CSV

    表  3  剖面曲线上的热流峰值对比

    Table  3.   Comparisons of heat flux peak on the profile curves

    高度/
    km
    Qmax/(kW·m−2 偏差/%
    z=0 m z=6 m z=0 m z=6 m
    无滑移 滑移 无滑移 滑移
    103.14 70.0333 38.5233 42.9678 34.3533 −45.00 −20.05
    96.09 143.7270 136.7052 89.4312 79.1976 −4.89 −11.44
    89.95 210.2339 202.8219 157.2112 146.4964 −3.53 −6.82
    85.70 196.5578 192.2128 180.1191 171.5663 −2.21 −4.75
    77.90 279.8960 276.4695 375.7782 366.5698 −1.22 −2.45
    下载: 导出CSV
  • [1] 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003: 1-196.

    SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003: 1-196(in Chinese).
    [2] 梁杰, 李志辉, 杜波强, 等. 探月返回器稀薄气体热化学非平衡特性数值模拟[J]. 载人航天, 2015, 21(3): 295-302.

    LIANG J, LI Z H, DU B Q, et al. Numerical simulation of rarefied gas thermochemical nonequilibrium when lunar exploration vehicle re-entering into atmosphere[J]. Manned Spaceflight, 2015, 21(3): 295-302(in Chinese).
    [3] LOFTHOUSE A, SCALABRIN L, BOYD I. Velocity slip and temperature jump in hypersonic aerothermodynamics[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
    [4] LOFTHOUSE A J. Nonequilibrium hypersonic aerothermodynamics using the direct simulation Monte Carlo and Navier-Stokes models[D]. Ann Arbor: The University of Michigan, 2008: 1-72.
    [5] MOSS J, BOYLES K, GREENE F. Orion aerodynamics for hypersonic free molecular to continuum conditions[C]//Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
    [6] VOTTA R, SCHETTINO A, RANUZZI G, et al. Hypersonic low-density aerothermodynamics of orion-like exploration vehicle[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 781-787. doi: 10.2514/1.42663
    [7] MORSA L, ZUPPARDI G, VOTTA R, et al. Influence of chemical models on heat flux for EXPERT and Orion capsules[J]. Journal of Aerospace Engineering, 2014, 228(6): 930-948. doi: 10.1177/0954410013483935
    [8] YAMAMOTO Y, YOSHIOKA M. CFD and FEM coupling analysis of OREX aerothermodynamic flight data[C]//Proceedings of the 30th Thermophysics Conference. Reston: AIAA, 1995.
    [9] GUPTA R, MOSS J, PRICE J. Assessment of thermochemical nonequilibrium and slip effects for Orbital Reentry Experiment (OREX)[C]//Proceedings of the 31st Thermophysics Conference. Reston: AIAA, 1996.
    [10] VLASOV V I, GORSHKOV A B. Comparison of the calculated results for hypersonic flow past blunt bodies with the OREX flight test data[J]. Fluid Dynamics, 2001, 36(5): 812-819. doi: 10.1023/A:1013033221093
    [11] 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 625718.

    LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625718(in Chinese).
    [12] 李鹏, 陈坚强, 丁明松, 等. LENS风洞试验返回器模型气动热特性模拟[J]. 航空学报, 2021, 42(S1): 198-208.

    LI P, CHEN J Q, DING M S, et al. Simulation of aerodynamic and thermal characteristics of LENS wind tunnel test returner model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 198-208(in Chinese).
    [13] ZOBY E V. Analysis of STS-2 experimental heating rates and transition data[J]. Journal of Spacecraft and Rockets, 1983, 20(3): 232-237. doi: 10.2514/3.25585
    [14] SCOTT C D. Effects of nonequilibrium and wall catalysis on Shuttle heat transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(5): 489-499. doi: 10.2514/3.25059
    [15] YOON S, JAMESON A. A multigrid LU-SSOR scheme for approximate newton iteration applied to the euler equations: NASA-CR-179524[R]. Washton, D. C. : NASA, 1986.
    [16] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K: NASA Reference Publication 1232[R]. Washton, D. C. : NASA, 1990.
    [17] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996: 1-206.

    DONG W Z. Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow[D]. Beijing: Beihang University, 1996: 1-206(in Chinese).
    [18] 郝佳傲. 高超声速热化学非平衡耦合效应的建模研究[D]. 北京: 北京航空航天大学, 2018: 1-148.

    HAO J A. Modeling of Thermochemical nonequilibrium coupling effects in hypersonic flows[D]. Beijing: Beihang University, 2018: 1-148(in Chinese).
    [19] 王京盈. 高速高温流动的化学非平衡及热辐射耦合效应研究[D]. 北京: 北京航空航天大学, 2017: 1-165.

    WANG J Y. Numerical study on coupled effects of the chemical nonequilibrium and thermal radiation in high speed and high temperature flows[D]. Beijing: Beihang University, 2017: 1-165(in Chinese).
    [20] SURZHIKOV S, SHANG J. Kinetic models analysis for super-orbital aerophysics[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
    [21] KO W L, QUINN R D, GONG L, et al. Reentry heat transfer analysis of the space shuttle orbiter: 82N23491[R]. Washton, D. C. : NASA, 1982.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  99
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2022-12-09
  • 网络出版日期:  2023-02-07
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答