Simulaton of therochemical nonequilibrium and rarefied-slip flows for hypersonic flight vehicles
-
摘要:
稀薄滑移效应对高超飞行器气动特性产生重要影响。基于HyFLOW软件构建适用于热化学非平衡流动模拟的速度滑移和温度滑移边界条件,同时分别选取猎户座(Orion)飞船返回舱、OREX试验飞行器及类“哥伦比亚号”(OV102)航天飞机等典型高超飞行器,开展稀薄滑移流动模拟及其相关气动特性预测分析。研究表明:HyFLOW软件的稀薄滑移边界模型计算可靠,在预测热化学非平衡及稀薄滑移耦合效应相关的气动力、气动热特性方面具有较高的计算精度,能够满足工程复杂外形的仿真应用需求;稀薄滑移效应可显著降低热流峰值和减小热流峰值分布区域大小,相比于无滑移条件,其在类OV102航天飞机外形中预测的头部热流峰值最大降低了约45%,机翼前缘热流峰值最大降低了约20%。
Abstract:The rarefied slip effect has a significant impact on the aerodynamic characteristics of hypersonic vehicle. Based on HyFLOW software, velocity slip and temperature slip boundary conditions suitable for thermochemical nonequilibrium flows are constructed. Meanwhile, the rarefied slip flows over the usual hypersonic vehicles of the Orion reentry capsule, OREX experiment flight vehicle, and the Columbia OV102-like space shuttle are simulated, and the associated aerodynamic properties are also anticipated and studied. Research results indicate that the rarefied slip boundary model in HyFLOW software is reliable, and has high computational accuracy in predicting the aerodynamic and aerothermal characteristics related to coupling effects of thermochemical nonequilibrium and rarefied slip. It can meet the simulation application requirements of complex engineering configurations. In addition, the rarefied slip effect can significantly reduce the peak value of heat flux and its distribution area. The peak heat flow of the OV102-like space shuttle's nose is anticipated by the slip condition to be, at most, 45% less than that of the no-slip condition, and, at most, 20% less than that of the leading edge of the wing.
-
Key words:
- hypersonic /
- thermochemical nonequilibrium /
- HyFLOW software /
- rarefied slip /
- space shuttle
-
表 1 再入过程典型飞行条件
Table 1. Typical flight conditions of reentry process
高度[21]/km 迎角[21]/(°) 速度[21]/(m·s−1) 密度[21]/(kg·m−3) 静温[21]/K 壁温[21]/K O质量分数 O2质量分数 N2质量分数 103.14 39.86 7675.57 3.2197 ×10−7202.638 322.0 0.0313 0.1864 0.7823 96.09 39.81 7663.61 1.1431 ×10−6189.395 464.0 0.0104 0.2193 0.7703 89.95 39.78 7648.45 3.4468 ×10−6186.867 660.0 0.0018 0.2302 0.7680 85.70 41.00 7530.00 7.3160 ×10−6187.460 852.0 0 0.2330 0.7670 77.90 40.20 7420.00 2.5630 ×10−5202.740 1005.0 0 0.2330 0.7670 表 2 全机气动力特性参数对比
Table 2. Comparisons of total aerodynamic forces
高度/km 升力系数CL CL偏差/% 阻力系数CD CD偏差/% 俯仰力矩系数CY CY偏差/% 无滑移 滑移 无滑移 滑移 无滑移 滑移 103.14 0.7413 0.7414 0.01 1.1931 1.1907 −0.20 0.091891 0.108430 18.00 96.09 0.7942 0.7949 0.09 0.9824 0.9787 −0.38 0.089040 0.089720 0.76 89.95 0.8230 0.8230 0.00 0.8947 0.8936 −0.12 0.084506 0.084442 −0.08 85.70 0.8778 0.8771 −0.08 0.8930 0.8918 −0.13 0.088543 0.088322 −0.25 77.90 0.8670 0.8670 0.00 0.8380 0.8377 −0.04 0.078104 0.078040 −0.08 表 3 剖面曲线上的热流峰值对比
Table 3. Comparisons of heat flux peak on the profile curves
高度/
kmQmax/(kW·m−2) 偏差/% z=0 m z=6 m z=0 m z=6 m 无滑移 滑移 无滑移 滑移 103.14 70.0333 38.5233 42.9678 34.3533 −45.00 −20.05 96.09 143.7270 136.7052 89.4312 79.1976 −4.89 −11.44 89.95 210.2339 202.8219 157.2112 146.4964 −3.53 −6.82 85.70 196.5578 192.2128 180.1191 171.5663 −2.21 −4.75 77.90 279.8960 276.4695 375.7782 366.5698 −1.22 −2.45 -
[1] 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003: 1-196.SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003: 1-196(in Chinese). [2] 梁杰, 李志辉, 杜波强, 等. 探月返回器稀薄气体热化学非平衡特性数值模拟[J]. 载人航天, 2015, 21(3): 295-302.LIANG J, LI Z H, DU B Q, et al. Numerical simulation of rarefied gas thermochemical nonequilibrium when lunar exploration vehicle re-entering into atmosphere[J]. Manned Spaceflight, 2015, 21(3): 295-302(in Chinese). [3] LOFTHOUSE A, SCALABRIN L, BOYD I. Velocity slip and temperature jump in hypersonic aerothermodynamics[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. [4] LOFTHOUSE A J. Nonequilibrium hypersonic aerothermodynamics using the direct simulation Monte Carlo and Navier-Stokes models[D]. Ann Arbor: The University of Michigan, 2008: 1-72. [5] MOSS J, BOYLES K, GREENE F. Orion aerodynamics for hypersonic free molecular to continuum conditions[C]//Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006. [6] VOTTA R, SCHETTINO A, RANUZZI G, et al. Hypersonic low-density aerothermodynamics of orion-like exploration vehicle[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 781-787. doi: 10.2514/1.42663 [7] MORSA L, ZUPPARDI G, VOTTA R, et al. Influence of chemical models on heat flux for EXPERT and Orion capsules[J]. Journal of Aerospace Engineering, 2014, 228(6): 930-948. doi: 10.1177/0954410013483935 [8] YAMAMOTO Y, YOSHIOKA M. CFD and FEM coupling analysis of OREX aerothermodynamic flight data[C]//Proceedings of the 30th Thermophysics Conference. Reston: AIAA, 1995. [9] GUPTA R, MOSS J, PRICE J. Assessment of thermochemical nonequilibrium and slip effects for Orbital Reentry Experiment (OREX)[C]//Proceedings of the 31st Thermophysics Conference. Reston: AIAA, 1996. [10] VLASOV V I, GORSHKOV A B. Comparison of the calculated results for hypersonic flow past blunt bodies with the OREX flight test data[J]. Fluid Dynamics, 2001, 36(5): 812-819. doi: 10.1023/A:1013033221093 [11] 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 625718.LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625718(in Chinese). [12] 李鹏, 陈坚强, 丁明松, 等. LENS风洞试验返回器模型气动热特性模拟[J]. 航空学报, 2021, 42(S1): 198-208.LI P, CHEN J Q, DING M S, et al. Simulation of aerodynamic and thermal characteristics of LENS wind tunnel test returner model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 198-208(in Chinese). [13] ZOBY E V. Analysis of STS-2 experimental heating rates and transition data[J]. Journal of Spacecraft and Rockets, 1983, 20(3): 232-237. doi: 10.2514/3.25585 [14] SCOTT C D. Effects of nonequilibrium and wall catalysis on Shuttle heat transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(5): 489-499. doi: 10.2514/3.25059 [15] YOON S, JAMESON A. A multigrid LU-SSOR scheme for approximate newton iteration applied to the euler equations: NASA-CR-179524[R]. Washton, D. C. : NASA, 1986. [16] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K: NASA Reference Publication 1232[R]. Washton, D. C. : NASA, 1990. [17] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996: 1-206.DONG W Z. Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow[D]. Beijing: Beihang University, 1996: 1-206(in Chinese). [18] 郝佳傲. 高超声速热化学非平衡耦合效应的建模研究[D]. 北京: 北京航空航天大学, 2018: 1-148.HAO J A. Modeling of Thermochemical nonequilibrium coupling effects in hypersonic flows[D]. Beijing: Beihang University, 2018: 1-148(in Chinese). [19] 王京盈. 高速高温流动的化学非平衡及热辐射耦合效应研究[D]. 北京: 北京航空航天大学, 2017: 1-165.WANG J Y. Numerical study on coupled effects of the chemical nonequilibrium and thermal radiation in high speed and high temperature flows[D]. Beijing: Beihang University, 2017: 1-165(in Chinese). [20] SURZHIKOV S, SHANG J. Kinetic models analysis for super-orbital aerophysics[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. [21] KO W L, QUINN R D, GONG L, et al. Reentry heat transfer analysis of the space shuttle orbiter: 82N23491[R]. Washton, D. C. : NASA, 1982.