留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IPSO-AM-LSTM的飞机地面空调能耗预测

刘涵 林家泉

刘涵,林家泉. 基于IPSO-AM-LSTM的飞机地面空调能耗预测[J]. 北京航空航天大学学报,2024,50(11):3595-3602 doi: 10.13700/j.bh.1001-5965.2022.0872
引用本文: 刘涵,林家泉. 基于IPSO-AM-LSTM的飞机地面空调能耗预测[J]. 北京航空航天大学学报,2024,50(11):3595-3602 doi: 10.13700/j.bh.1001-5965.2022.0872
LIU H,LIN J Q. Energy consumption prediction of aircraft ground air conditioning based on IPSO-AM-LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3595-3602 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0872
Citation: LIU H,LIN J Q. Energy consumption prediction of aircraft ground air conditioning based on IPSO-AM-LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3595-3602 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0872

基于IPSO-AM-LSTM的飞机地面空调能耗预测

doi: 10.13700/j.bh.1001-5965.2022.0872
详细信息
    作者简介:

    刘涵等:基于IPSO-AM-LSTM的飞机地面空调能耗预测 3

    通讯作者:

    E-mail:jqlin@cauc.edu.cn

  • 中图分类号: V351.3

Energy consumption prediction of aircraft ground air conditioning based on IPSO-AM-LSTM

More Information
  • 摘要:

    作为一个复杂的热力系统,飞机地面空调能耗受到多种因素的影响,包括各种天气数据和时间特征。为提升飞机客舱使用地面空调制冷时地面空调能耗预测精度,构造了一种基于长短时记忆网络(LSTM)的地面空调能耗预测模型。该模型融合长短时记忆网络和注意力机制构建预测部分,用于提取和利用数据中的时序信息,并以预测精度作为算法的适应度函数,提出一种基于改进粒子群优化(IPSO)算法的超参数优化方法,与标准粒子群优化(PSO)算法相比,该优化算法将迭代次数与适应度相结合,构建了惯性权重的动态调节函数,对其进行动态调节,并引入粒子到全局最优位置的距离参数,提出一种粒子交叉策略,提高粒子群的多样性。所提方法在实际数据集上的仿真预测结果的均方误差为4.394,平均绝对百分比误差为0.774%,决定系数为0.968。与其他预测方法进行对比,结果表明:所提方法有更高的准确度。

     

  • 图 1  LSTM神经网络内部结构

    Figure 1.  Internal structure of LSTM

    图 2  预测部分结构

    Figure 2.  Structure diagram of prediction section

    图 3  交叉策略

    Figure 3.  Crossover strategy

    图 4  IPSO-AM-LSTM结构示意

    Figure 4.  Structure of IPSO-AM-LSTM

    图 5  IPSO-AM-LSTM训练流程

    Figure 5.  Training flow chart of IPSO-AM-LSTM

    图 6  优化算法迭代过程

    Figure 6.  Iterative process of optimization algorithms

    图 7  不同模型下预测值与真实值的对比

    Figure 7.  Comparison of predicted and real values under different models

    表  1  部分能耗数据

    Table  1.   Part of sample data

    乘客下机的
    客舱温度/℃
    乘客下机的
    客舱湿度/%
    乘客登机的
    客舱温度/℃
    乘客登机的
    客舱湿度/%
    耗电量/kW
    31.8156.2526.4937.01181.53
    30.3562.7024.0737.10165.64
    31.8449.5225.8525.05179.51
    35.1867.5126.6435.31185.49
    33.8172.7325.9336.86169.88
    下载: 导出CSV

    表  2  超参数搜索范围

    Table  2.   Search range of hyperparameters

    超参数 搜索范围
    批大小 1~90
    学习率 0.0001~0.01
    LSTM层单元数 10~90
    Dense层单元数 10~90
    Dropout层丢弃概率 0.1~0.9
    迭代次数 400
    下载: 导出CSV

    表  3  3种算法搜寻结果

    Table  3.   Three algorithms search results

    算法 批大小 LSTM层
    单元数
    Dense层
    单元数
    Dropout层
    丢弃概率
    学习率 迭代次数
    SCA 3 74 22 0.1 0.005 5 400
    PSO 1 74 45 0.28 0.009 0 400
    IPSO 1 23 37 0.1 0.003 5 400
    下载: 导出CSV

    表  4  不同模型评价结果

    Table  4.   Evaluation results for different models

    模型 MSE MAPE/% R2
    BP 61.042 7.075 0.553
    LSTM 14.691 1.669 0.893
    AM-LSTM 10.195 1.140 0.925
    PSO-AM-LSTM 8.952 1.087 0.935
    SCA-AM-LSTM 7.519 0.840 0.945
    IPSO-AM-LSTM 4.394 0.774 0.968
    下载: 导出CSV
  • [1] SHI G, LIU D R, WEI Q L. Energy consumption prediction of office buildings based on echo state networks[J]. Neurocomputing, 2016, 216: 478-488. doi: 10.1016/j.neucom.2016.08.004
    [2] WANG J Q, DU Y, WANG J. LSTM based long-term energy consumption prediction with periodicity[J]. Energy, 2020, 197: 117197. doi: 10.1016/j.energy.2020.117197
    [3] WANG Z Y, WANG Y R, ZENG R C, et al. Random Forest based hourly building energy prediction[J]. Energy and Buildings, 2018, 171: 11-25. doi: 10.1016/j.enbuild.2018.04.008
    [4] 王修岩, 刘艳敏, 张革文, 等. 基于PSO和CRO联合算法的飞机客舱能耗预测[J]. 系统仿真学报, 2018, 30(8): 3074-3081.

    WANG X Y, LIU Y M, ZHANG G W, et al. Prediction of aircraft cabin energy consumption based on PSO and CRO algorithms[J]. Journal of System Simulation, 2018, 30(8): 3074-3081(in Chinese).
    [5] 林家泉, 孙凤山, 李亚冲, 等. 基于IPSO-Elman 神经网络的飞机客舱能耗预测[J]. 航空学报, 2020, 41(7): 234-243.

    LIN J Q, SUN F S, LI Y C, et al. Prediction of aircraft cabin energy consumption based on IPSO-Elman neural network[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 234-243(in Chinese).
    [6] BEDI G, VENAYAGAMOORTHY G K, SINGH R. Development of an IoT-driven building environment for prediction of electric energy consumption[J]. IEEE Internet of Things Journal, 2020, 7(6): 4912-4921. doi: 10.1109/JIOT.2020.2975847
    [7] SRIVASTAVA S, LESSMANN S. A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data[J]. Solar Energy, 2018, 162: 232-247. doi: 10.1016/j.solener.2018.01.005
    [8] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [9] RAJAN S, CHENNIAPPAN P, DEVARAJ S, et al. Novel deep learning model for facial expression recognition based on maximum boosted CNN and LSTM[J]. IET Image Processing, 2020, 14(7): 1373-1381. doi: 10.1049/iet-ipr.2019.1188
    [10] JO J, KUNG J, LEE Y. Approximate LSTM computing for energy-efficient speech recognition[J]. Electronics, 2020, 9(12): 2004. doi: 10.3390/electronics9122004
    [11] LIU S C, WANG X L, XIANG Y, et al. Multi-channel fusion LSTM for medical event prediction using EHRs[J]. Journal of Biomedical Informatics, 2022, 127: 104011. doi: 10.1016/j.jbi.2022.104011
    [12] SEYEDZADEH S, POUR RAHIMIAN F, RASTOGI P, et al. Tuning machine learning models for prediction of building energy loads[J]. Sustainable Cities and Society, 2019, 47: 101484. doi: 10.1016/j.scs.2019.101484
    [13] KIM T Y, CHO S B. Predicting residential energy consumption using CNN-LSTM neural networks[J]. Energy, 2019, 182: 72-81. doi: 10.1016/j.energy.2019.05.230
    [14] MA C, LIN C, SAMUEL O W, et al. Continuous estimation of upper limb joint angle from sEMG signals based on SCA-LSTM deep learning approach[J]. Biomedical Signal Processing and Control, 2020, 61: 102024. doi: 10.1016/j.bspc.2020.102024
    [15] 周璇, 林家泉. 基于改进长短时记忆网络的地面空调能耗预测[J]. 北京航空航天大学学报, 2023, 49(10): 2750-2760.

    ZHOU X , LIN J Q. Prediction of ground air conditioner energy consumption based on improved long short-term memory network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(10): 2750-2760(in Chinese).
    [16] REN X Q, LIU S L, YU X D, et al. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM[J]. Energy, 2021, 234: 121236. doi: 10.1016/j.energy.2021.121236
    [17] WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: an overview[J]. Soft Computing, 2018, 22(2): 387-408. doi: 10.1007/s00500-016-2474-6
    [18] 梅海涛, 华继学, 王毅, 等. 基于直觉模糊支配的混合多目标粒子群算法[J]. 计算机科学, 2017, 44(1): 253-258. doi: 10.11896/j.issn.1002-137X.2017.01.047

    MEI H T, HUA J X, WANG Y, et al. Hybrid multi-objective particle swarm optimization based on intuitionistic fuzzy dominance[J]. Computer Science, 2017, 44(1): 253-258(in Chinese). doi: 10.11896/j.issn.1002-137X.2017.01.047
    [19] 汪浩然, 夏克文, 牛文佳. 分段正交匹配追踪(StOMP)算法改进研究[J]. 计算机工程与应用, 2017, 53(16): 55-61. doi: 10.3778/j.issn.1002-8331.1604-0226

    WANG H R, XIA K W, NIU W J. Improved research on stagewise orthogonal matching pursuit (StOMP) algorithm[J]. Computer Engineering and Applications, 2017, 53(16): 55-61(in Chinese). doi: 10.3778/j.issn.1002-8331.1604-0226
    [20] HAN F, SUN Y W T, LING Q H. An improved multiobjective quantum-behaved particle swarm optimization based on double search strategy and circular transposon mechanism[J]. Complexity, 2018, 2018(1): 8702820. doi: 10.1155/2018/8702820
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  90
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2022-12-18
  • 网络出版日期:  2023-01-04
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答