留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向突防的滑翔制导炮弹弹道规划方法

尹秋霖 陈琦 王中原 王庆海

尹秋霖,陈琦,王中原,等. 面向突防的滑翔制导炮弹弹道规划方法[J]. 北京航空航天大学学报,2024,50(10):3151-3161 doi: 10.13700/j.bh.1001-5965.2023.0049
引用本文: 尹秋霖,陈琦,王中原,等. 面向突防的滑翔制导炮弹弹道规划方法[J]. 北京航空航天大学学报,2024,50(10):3151-3161 doi: 10.13700/j.bh.1001-5965.2023.0049
YIN Q L,CHEN Q,WANG Z Y,et al. Trajectory programming method of gliding-guided projectiles for penetration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3151-3161 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0049
Citation: YIN Q L,CHEN Q,WANG Z Y,et al. Trajectory programming method of gliding-guided projectiles for penetration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3151-3161 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0049

面向突防的滑翔制导炮弹弹道规划方法

doi: 10.13700/j.bh.1001-5965.2023.0049
基金项目: 国家自然科学基金(52202475);江苏省自然科学基金(BK20200498)
详细信息
    通讯作者:

    E-mail:qichen@njust.edu.cn

  • 中图分类号: TJ413+.6

Trajectory programming method of gliding-guided projectiles for penetration

Funds: National Natural Science Foundation of China (52202475); Natural Science Foundation of Jiangsu Province (BK20200498)
More Information
  • 摘要:

    针对滑翔制导炮弹在不可避免的威胁区域内选择突防方案的问题,从量化威胁值的角度建立了敌方防御手段的数学模型,基于模型设计了全程综合威胁值最低的规划指标,提出考虑目标防御威胁的弹道规划方法。为实现滑翔制导炮弹全程飞行过程中初始弹道倾角、偏角、火箭点火时刻、滑翔启控时刻等各参数的最佳匹配,建立了多阶段全弹道规划模型,并采用hp自适应伪谱法将最优控制问题转换为非线性规划问题求解。通过仿真验证了在该指标下滑翔制导炮弹对目标防御的规避效果,分析了影响有效性的因素。与传统弹道规划方法进行对比,证明了所提方法的优越性。

     

  • 图 1  全弹道规划流程

    Figure 1.  Flow of full trajectory planning

    图 2  场景1仿真结果

    Figure 2.  Simulation results of Scene 1

    图 3  场景2仿真结果

    Figure 3.  Simulation results of Scene 2

    图 4  场景3仿真结果

    Figure 4.  Simulation results of Scene 3

    图 5  与传统方法对比结果(算例3)

    Figure 5.  Results compared with traditional methods (Example 3)

    表  1  滑翔弹参数

    Table  1.   Gliding-guided projectile parameter

    参数 数值
    $m/{\text{kg}}$ 44.5
    ${m_{\rm{p}}}/{\text{kg}}$ 7.23
    $S/{{\text{m}}^2}$ 0.013 3
    ${T_{\rm{p}}}/{\text{N}}$ 1 219.2
    ${t_{\mathrm{b}}}/{\text{s}}$ 14.068
    ${k_{\rm{c}}}$ 35
    下载: 导出CSV

    表  2  目标防御参数

    Table  2.   Target defense parameter

    参数 数值
    ${R_{{\mathrm{r}}\max }}/{\text{km}}$ 50
    ${R_{{\mathrm{g}}\min }}/{\text{km}}$ 2
    ${R_{{\mathrm{g}}\max }}/{\text{km}}$ 7
    ${R_{{\mathrm{p}}\min }}/{\text{km}}$ 1
    ${R_{{\mathrm{p}}\max }}/{\text{km}}$ 3
    下载: 导出CSV

    表  3  仿真参数

    Table  3.   Simulation parameter

    参数数值参数数值
    ${x_0}/{\text{km}}$0${\psi _{{\mathrm{v}}0\max }}/({\text{°}})$90
    ${y_0}/{\text{km}}$0${T_{\max }}/{\text{s}}$300
    ${{\textit{z}}_0}/{\text{km}}$0$ {V}_{{\mathrm{f}}\mathrm{min}}/(\text{m}\cdot {\text{s}}^{-1})$250
    ${x_{\mathrm{T}}}/{\text{km}}$60$\alpha _{\max }^*/({\text{°}})$15
    ${y_{\mathrm{T}}}/{\text{km}}$0$\beta _{\max }^*/({\text{°}})$10
    ${{\textit{z}}_{\mathrm{T}}}/{\text{km}}$1$\alpha $0.1
    $ {V}_{0}/(\text{m}\cdot {\text{s}}^{-1}) $800$\beta $0.5
    ${\theta _{0\min }}/({\text{°}}) $0$\gamma $0.2
    ${\theta _{0\max }}/({\text{°}})$90$\eta $0.3
    ${\psi _{{\mathrm{v}}0\min }}/({\text{°}})$−90
    下载: 导出CSV

    表  4  场景1雷达位置

    Table  4.   Radar position of Scene 1

    算例 雷达位置坐标/km
    1 (10,0,2)
    2 (10,0,−5)
    3 (10,0,10)
    下载: 导出CSV

    表  5  场景1全弹道规划结果

    Table  5.   Full trajectory programming results of Scene 1

    算例 $ {\theta _0}/({\text{°}}) $ $ {\psi _{{\mathrm{v}}0}}/({\text{°}}) $ $ {t_{\mathrm{i}}}/{\mathrm{s}} $ $ {t_{\rm{o}}}/{\mathrm{s}} $ $ {t_{\mathrm{f}}}/{\mathrm{s}} $ 威胁值
    1 56.72 4.38 9.55 69.31 185.29 19.61
    2 56.26 −14.53 9.80 67.10 191.34 16.13
    3 56.02 20.09 10.51 65.09 201.38 12.25
    下载: 导出CSV

    表  6  场景2雷达位置

    Table  6.   Radar position of Scene 2

    算例 雷达位置坐标/km
    1 (40,0,−1)
    2 (40,0,2/3)
    3 (40,0,−15)
    下载: 导出CSV

    表  7  场景2全弹道规划结果

    Table  7.   Full trajectory programming results of Scene 2

    算例 $ {\theta _0}/({\text{°}}) $ $ {\psi _{{\mathrm{v}}0}}/({\text{°}}) $ $ {t_{\mathrm{i}}}/{\mathrm{s}} $ $ {t_{\rm{o}}}/{\mathrm{s}} $ $ {t_{\mathrm{f}}}/{\mathrm{s}} $ 威胁值
    1 64.12 −9.44 16.34 66.42 196.29 29.40
    2 64.13 −0.96 16.08 69.54 193.20 30.25
    3 65.11 −27.99 22.71 69.60 221.87 8.85
    下载: 导出CSV

    表  8  场景3雷达位置

    Table  8.   Radar position of Scene 3

    算例 雷达位置坐标/km
    1 (10,0,2),(40,0,−1)
    2 (10,0,−1),(40,0,2)
    3 (15,0,20),(50,0,−5)
    4 (10,0,−20),(50,0,10)
    下载: 导出CSV

    表  9  场景3全弹道规划结果

    Table  9.   Full trajectory programming results of Scene 3

    算例 $ {\theta _0}/({\text{°}}) $ $ {\psi _{{\mathrm{v}}0}}/({\text{°}}) $ $ {t_{\mathrm{i}}}/{\mathrm{s}} $ $ {t_{\rm{o}}}/{\mathrm{s}} $ $ {t_{\mathrm{f}}}/{\mathrm{s}} $ 威胁值
    1 60.18 −3.51 10.80 66.33 188.56 45.93
    2 60.21 1.59 10.87 61.53 188.83 45.87
    3 61.99 1.99 13.65 61.42 191.05 35.39
    4 61.69 −1.61 13.48 67.89 190.33 32.25
    下载: 导出CSV

    表  10  雷达位置

    Table  10.   Radar positions

    算例 雷达位置坐标/km
    1 (10,0,2)
    2 (40,0,−1)
    3 (60,0,1)
    4 (15,0,20),(50,0,−5)
    下载: 导出CSV

    表  11  传统方法全弹道规划结果

    Table  11.   Full trajectory programming results of traditional methods

    方法 $ {\theta _0}/({\text{°}}) $ $ {\psi _{{\mathrm{v}}0}}/({\text{°}}) $ $ {t_{\mathrm{i}}}/{\mathrm{s}} $ $ {t_{\rm{o}}}/{\mathrm{s}} $ $ {t_{\mathrm{f}}}/{\mathrm{s}} $ 能量消耗/(rad2·s)
    2 63.07 −0.86 17.48 43.42 200.32 17.02
    3 58.57 −0.95 10.77 50.83 196.32 22.24
    下载: 导出CSV

    表  12  不同算例中与传统方法对比结果

    Table  12.   Results compared with traditional methods in different examples

    算例 威胁值 方法1的
    能量消耗/(rad2·s)
    方法1的
    飞行时间/s
    方法1 方法2 方法3
    1 19.51 29.65 28.69 22.51 197.76
    2 28.35 41.95 42.25 24.31 202.86
    3 21.79 34.46 34.51 24.93 203.07
    4 34.58 53.33 53.05 24.29 200.78
    下载: 导出CSV
  • [1] GUO F S, LIU X X, LIU D. Review on the trajectory design of the dynamic-glider missile[J]. Procedia Engineering, 2011, 15: 1191-1195. doi: 10.1016/j.proeng.2011.08.220
    [2] 陈琦. 滑翔增程制导炮弹弹道优化及制导控制方法研究[D]. 南京: 南京理工大学, 2017.

    CHEN Q. Investigation on trajectory optimization and guidance &control scheme for a type of gliding guided projectiles[D]. Nanjing: Nanjing University of Science and Technology, 2017(in Chinese).
    [3] CHEN Q, WANG Z Y. Optimal trajectory for time-on-target of a guided projectile using direct collocation method[C]//Proceedings of the International Conference on Mechatronic Sciences, Electric Engineering and Computer. Piscataway: IEEE Press, 2013: 2803-2806.
    [4] 徐秋坪. 滑翔制导炮弹弹道规划及其自抗扰控制系统研究[D]. 南京: 南京理工大学, 2018.

    XU Q P. Trajectory optimization and active-disturbance-rejection control system for gliding guided projectiles[D]. Nanjing: Nanjing University of Science and Technology, 2018(in Chinese).
    [5] XIAO J K, WANG G, GUO X K, et al. Modeling on threat assessment system of reentry-course ballistic missile[J]. Advanced Materials Research, 2013, 722: 301-305. doi: 10.4028/www.scientific.net/AMR.722.301
    [6] KUMAR S, TRIPATHI B K. Modelling of threat evaluation for dynamic targets using Bayesian network approach[J]. Procedia Technology, 2016, 24: 1268-1275. doi: 10.1016/j.protcy.2016.05.112
    [7] 王勃, 姚佩阳, 税冬东, 等. 基于影响网的战场威胁强度评估建模[J]. 计算机工程与设计, 2014, 35(8): 2836-2840. doi: 10.3969/j.issn.1000-7024.2014.08.043

    WANG B, YAO P Y, SHUI D D, et al. Modeling of battlefield threat intensity evaluation based on influence nets[J]. Computer Engineering and Design, 2014, 35(8): 2836-2840(in Chinese). doi: 10.3969/j.issn.1000-7024.2014.08.043
    [8] LEE H, CHOI B J, KIM C O, et al. Threat evaluation of enemy air fighters via neural network-based Markov chain modeling[J]. Knowledge-Based Systems, 2017, 116: 49-57.
    [9] LIU J, LI X B, LEI Y L, et al. An index based threat modeling method for path planning[C]//Proceedings of the 2009 First International Conference on Advances in System Simulation. Piscataway: IEEE Press, 2009: 1-5.
    [10] 刘娟, 赵新, 雷永林, 等. 基于指数法的导弹航迹规划空间威胁建模研究[J]. 系统仿真学报, 2009, 21(17): 5353-5356.

    LIU J, ZHAO X, LEI Y L, et al. Modeling of threat space for missile route planning based on index-method[J]. Journal of System Simulation, 2009, 21(17): 5353-5356(in Chinese).
    [11] 刘娟, 王维平. 基于仿真数据的航迹规划威胁建模方法研究[J]. 计算机仿真, 2010, 27(9): 24-28. doi: 10.3969/j.issn.1006-9348.2010.09.007

    LIU J, WANG W P. A simulation data based space threat modeling method for path planning[J]. Computer Simulation, 2010, 27(9): 24-28(in Chinese). doi: 10.3969/j.issn.1006-9348.2010.09.007
    [12] 黄俊, 于雷, 李战武, 等. 对地任务规划系统威胁空间综合量化建模与仿真[J]. 系统仿真学报, 2010, 22(4): 1033-1036.

    HUANG J, YU L, LI Z W, et al. Integrated quantization modeling and simulation of threat space for air-to-surface mission planning system[J]. Journal of System Simulation, 2010, 22(4): 1033-1036 (in Chinese).
    [13] 申舟, 谢文俊, 赵晓林, 等. 基于人工势场的无人机战场威胁建模研究[J]. 计算机仿真, 2014, 31(2): 60-64. doi: 10.3969/j.issn.1006-9348.2014.02.013

    SHEN Z, XIE W J, ZHAO X L, et al. Modeling of UAV battlefield threats based on artificial potential field[J]. Computer Simulation, 2014, 31(2): 60-64(in Chinese). doi: 10.3969/j.issn.1006-9348.2014.02.013
    [14] 郭志鸿. 多无人机协同的实时任务分配与航迹规划研究[D]. 重庆: 重庆理工大学, 2022.

    GUO Z H. Research on real-time task assignment and tracks planning for multi-UAV collaboration[D]. Chongqing: Chongqing University of Technology, 2022(in Chinese).
    [15] ZHANG R, LI S, DING Y M, et al. UAV path planning algorithm based on improved Harris Hawks optimization[J]. Sensors, 2022, 22(14): 5232. doi: 10.3390/s22145232
    [16] GUO Y C, LIU X X, ZHANG W G, et al. An improved algorithm of UAV 3D path planning[C]//Proceedings of the International Conterence on Guidance, Vavigation and Control. Berlin: Springer, 2021: 849-859.
    [17] 李晓萌, 王道波, 郭继凯, 等. 基于某种生物启发式算法的无人机航迹规划[J]. 机械与电子, 2018, 36(11): 15-19. doi: 10.3969/j.issn.1001-2257.2018.11.004

    LI X M, WANG D B, GUO J K, et al. Path planning of UAV based on a biological heuristic algorithm[J]. Machinery & Electronics, 2018, 36(11): 15-19(in Chinese). doi: 10.3969/j.issn.1001-2257.2018.11.004
    [18] 彭建亮, 孙秀霞, 蔡满意, 等. 基于人工势场的防空威胁建模与仿真[J]. 系统工程与电子技术, 2010, 32(2): 338-341.

    PENG J L, SUN X X, CAI M Y, et al. Modeling and simulation of air defense threat based on artificial potential field[J]. Systems Engineering and Electronics, 2010, 32(2): 338-341(in Chinese).
    [19] ALPDEMIR M N. Tactical UAV path optimization under radar threat using deep reinforcement learning[J]. Neural Computing and Applications, 2022, 34(7): 5649-5664. doi: 10.1007/s00521-021-06702-3
    [20] 温乃峰. 低空复杂环境下小型无人机的在线航迹规划算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    WEN N F. Research on the small UAV online path planning algorithms in complex and low-altitude environments[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [21] 张志伟, 蒋道刚, 袁坤刚. 低空突防航线规划研究[J]. 飞行力学, 2019, 37(4): 62-67.

    ZHANG Z W, JIANG D G, YUAN K G. Study on low altitude penetration route planning[J]. Flight Dynamics, 2019, 37(4): 62-67(in Chinese).
    [22] 周鑫, 李新洪, 王谦. 基于威胁建模的PSO在UAV 3维航路规划中的应用[J]. 兵工自动化, 2017, 36(4): 73-76. doi: 10.7690/bgzdh.2017.04.020

    ZHOU X, LI X H, WANG Q. Application of PSO based on threat modeling in 3D route planning of UAV[J]. Ordnance Industry Automation, 2017, 36(4): 73-76(in Chinese). doi: 10.7690/bgzdh.2017.04.020
    [23] LIU J S, JIANG W Z, LIU T. Penetration efficiency evaluation of missile with jammer[J]. Applied Mechanics and Materials, 2015, 719-720: 369-375. doi: 10.4028/www.scientific.net/AMM.719-720.369
    [24] 唐嘉钰, 李相民, 代进进. 基于威胁建模的UCAV武器投放在线航迹规划[J]. 西北工业大学学报, 2021, 39(2): 382-391. doi: 10.3969/j.issn.1000-2758.2021.02.019

    TANG J Y, LI X M, DAI J J. Online trajectory planning for UCAV performing ground attacks based on threat modeling[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 382-391(in Chinese). doi: 10.3969/j.issn.1000-2758.2021.02.019
    [25] MA M X, WU J, SHI Y, et al. Chaotic random opposition-based learning and cauchy mutation improved moth-flame optimization algorithm for intelligent route planning of multiple UAVs[J]. IEEE Access, 2022, 10: 49385-49397. doi: 10.1109/ACCESS.2022.3172710
    [26] GUO J G, HU G J, GUO Z Y, et al. Evaluation model, intelligent assignment, and cooperative interception in multimissile and multitarget engagement[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3104-3115. doi: 10.1109/TAES.2022.3144111
    [27] CHEN Q, WANG Z Y, CHANG S J, et al. Multiphase trajectory optimization for gun-launched glide guided projectiles[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(6): 995-1010. doi: 10.1177/0954410015602507
    [28] 邱文杰, 孟秀云. 基于hp自适应伪谱法的飞行器多阶段轨迹优化[J]. 北京理工大学学报, 2017, 37(4): 412-417.

    QIU W J, MENG X Y. Multi-phase trajectory optimization of vehicle based on hp-adaptive pseudospectral method[J]. Transactions of Beijing Institute of Technology, 2017, 37(4): 412-417(in Chinese).
    [29] 韩子鹏. 弹箭外弹道学[M]. 北京: 北京理工大学出版社, 2008.

    HAN Z P. External ballistics of projectile and arrow[M]. Beijing: Beijing Insititute of Technology Press, 2008 (in Chinese).
    [30] 任天祥, 贺建良, 邹杰. 基于改进Theta*算法的直升机三维航路规划[J]. 电光与控制, 2022, 29(2): 45-48. doi: 10.3969/j.issn.1671-637X.2022.02.010

    REN T X, HE J L, ZOU J. 3D route planning for helicopters based on improved Theta* algorithm[J]. Electronics Optics & Control, 2022, 29(2): 45-48(in Chinese). doi: 10.3969/j.issn.1671-637X.2022.02.010
    [31] 卞强, 孙齐, 童余德. 一种新的改进A*算法无人机三维路径规划[J]. 武汉理工大学学报, 2022, 44(7): 80-88. doi: 10.3963/j.issn.1671-4431.2022.07.012

    BIAN Q, SUN Q, TONG Y D. A new improved A* algorithm for UAV 3D path planning[J]. Journal of Wuhan University of Technology, 2022, 44(7): 80-88(in Chinese). doi: 10.3963/j.issn.1671-4431.2022.07.012
    [32] 王丽英, 张友安, 黄诘. 带约束的末制导律与伪谱法轨迹优化[M]. 北京: 国防工业出版社, 2015.

    WANG L Y, ZHANG Y A, HUANG J. Constrained terminal guidance law and pseudospectral trajectory optimization[M]. Beijing: National Defense Industry Press, 2015(in Chinese).
  • 加载中
图(5) / 表(12)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  101
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 录用日期:  2023-06-02
  • 网络出版日期:  2023-06-26
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答