留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型复合式构型直升机气动干扰特性分析

梁家辉 张夏阳 招启军

孙鹏伟, 王士敏, 王琪, 等 . 人体手端点到点运动的优化轨迹生成与控制[J]. 北京航空航天大学学报, 2010, 36(7): 826-829.
引用本文: 梁家辉,张夏阳,招启军. 新型复合式构型直升机气动干扰特性分析[J]. 北京航空航天大学学报,2025,51(3):922-932 doi: 10.13700/j.bh.1001-5965.2023.0084
Sun Pengwei, Wang Shimin, Wang Qi, et al. Optimal trajectory formation and control of human arm point-to-point movement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 826-829. (in Chinese)
Citation: LIANG J H,ZHANG X Y,ZHAO Q J. Aerodynamic interference characteristics of a new compound configuration helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):922-932 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0084

新型复合式构型直升机气动干扰特性分析

doi: 10.13700/j.bh.1001-5965.2023.0084
基金项目: 国家自然科学基金(12032012,12102186);国家重点实验室基金(61422202201);江苏省自然科学基金(BK20200433)
详细信息
    通讯作者:

    E-mail:zhaoqijun@nuaa.edu.cn

  • 中图分类号: V211.52;TB553

Aerodynamic interference characteristics of a new compound configuration helicopter

Funds: National Natural Science Foundation of China (12032012,12102186); State Key Laboratory Foundation of China (61422202201); Natural Science Foundation of Jiangsu Province (BK20200433)
More Information
  • 摘要:

    综合共轴双旋翼直升机高悬停效率和操纵效率的特点及双推力螺旋桨复合式直升机高速前飞性能的优势,将共轴双旋翼应用到双推力螺旋桨复合式直升机上。以X3复合式直升机为基准,将单旋翼改为共轴双旋翼。为研究共轴双旋翼对复合式直升机气动特性的影响,建立全机快速配平方法,并在此基础上针对不同构型直升机开展气动特性分析。结果表明:相较于单旋翼构型,共轴双旋翼构型直升机空气动力学特性具有良好的对称性;在保持较好的高速前飞性能的情况下,共轴双旋翼复合构型可以显著提升悬停和低速飞行性能,悬停效率提升6.8%,100 km/h前飞速度下总需用功率降低23.1%;低速状态下共轴双旋翼对螺旋桨的气动干扰程度明显低于单旋翼构型。

     

  • 图 1  复合式直升机受力分析

    Figure 1.  Force analysis of compound helicopter

    图 2  基于动量源模型的配平流程

    Figure 2.  Trim process based on momentum source model

    图 3  共轴双旋翼构型几何模型

    Figure 3.  Geometric model of coaxial-rotor configuration

    图 4  机身纵向对称面和螺旋桨平面网格

    Figure 4.  Grids of longitudinal symmetry plane of fuselage and propeller plane

    图 5  悬停旋翼的计算结果对比

    Figure 5.  Comparison of calculation results of hovering rotor

    图 6  前飞旋翼的计算结果对比

    Figure 6.  Comparison of calculation results of forward flight rotor

    图 7  机身流场计算结果与试验值对比

    Figure 7.  Comparison of calculation results of fuselage flow field with test results

    图 8  单旋翼构型与共轴双旋翼构型悬停效率对比

    Figure 8.  Comparison of hovering efficiency between single-rotor configuration and coaxial-rotor configuration

    图 9  悬停状态机翼上表面压强对比

    Figure 9.  Comparison of upper surface pressure of wing in hovering

    图 10  旋翼拉力和总距随前飞速度的变化

    Figure 10.  Variation of rotor thrust and collective pitch with forward flight speed

    图 11  旋翼桨盘横向剖面压强对比,V=400 km/h

    Figure 11.  Pressure comparison of transverse profile of rotor disk, V = 400 km/h

    图 12  机翼气动特性随前飞速度的变化

    Figure 12.  Variation of aerodynamic characteristics of wing with forward flight speed

    图 13  螺旋桨总距随前飞速度的变化

    Figure 13.  Variation of propeller collective pitch with forward flight speed

    图 14  螺旋桨推进效率随前飞速度的变化

    Figure 14.  Variation of propeller propulsion efficiency with forward flight speed

    图 15  两侧螺旋桨纵向剖面流场分布(V=100 km/h)

    Figure 15.  Flow field distribution in longitudinal profile of propellers (V = 100 km/h)

    图 16  螺旋桨桨盘平面流场分布

    Figure 16.  Flow field distribution of propeller disk plane

    图 17  螺旋桨推力与孤立螺旋桨的对比

    Figure 17.  Comparison of propeller thrust with isolated propeller thrust

    图 18  全机需用功率对比

    Figure 18.  Comparison of total required power

    图 19  需用功率组分对比

    Figure 19.  Comparison of required power components

    图 20  旋翼翼型阻力特性曲线

    Figure 20.  Drag characteristic curve of rotor airfoil

    表  1  单旋翼构型原准机[3]

    Table  1.   Prototype of single-rotor configuration [3]

    半径R/m 转速/(rad·s−1) 桨叶片数 桨叶根切/m 弦长/m 翼型
    6.3 36.55 5 1.512 0.385 NACA6412
    下载: 导出CSV

    表  2  共轴双旋翼构型

    Table  2.   Coaxial-rotor configuration

    旋翼参数 半径R/m 转速/(rad·s−1) 桨叶片数 上下旋翼间距H/R 旋翼参数 桨叶根切/m 弦长/m 翼型
    数值 6.3 36.55 3+3 0.16 数值 1.512 0.321 NACA6412
    下载: 导出CSV
  • [1] EDI P, YUSOFF N, YAZID A A, et al. New design concept of compound helicopter[C]// Proceedings of the 4th WSEAS International Conference on APPLIED and THEORETICAL MECHANICS. Athens: WSEAS Press, 2008: 101-105.
    [2] ORCHARD M, NEWMAN S. The fundamental configuration and design of the compound helicopter[J]. Journal of Aerospace Engineering, 2003, 217(6): 297-315.
    [3] 赵寅宇, 黎鑫, 史勇杰, 等. 双拉力螺旋桨构型复合式高速直升机旋翼/螺旋桨干扰流场分析[J]. 南京航空航天大学学报, 2017, 49(2): 154-164.

    ZHAO Y Y, LI X, SHI Y J, et al. Analysis of rotor/propeller interference flow field of double-pull propeller configuration composite high-speed helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(2): 154-164(in Chinese).
    [4] FERGUSON K, THOMSON D. F1ight dynamics investigation of compound helicopter configurations[J]. Journal of Aircraft, 2015, 52(1): 1-12. doi: 10.2514/1.C033321
    [5] BLACKWELL R, MILLOTT T. Dynamics design characteristics of the Sikorsky X2 technologyTM demonstrator aircraft: 64-2008-000174[R]. Montreal: The American Helicopter Society, 2008: 1-13.
    [6] 于琦. 美军下一代直升机的需求与竞争[J]. 兵器知识, 2020(12): 51-55.

    YU Q. Demand and competition of American next generation helicopter[J]. Ordnance Knowledge, 2020(12): 51-55(in Chinese).
    [7] 朱振华, 朱清华, 申遂愿. 一种涵道螺旋桨推力共轴双旋翼直升机: CN109665096A[P]. 2019-04-23.

    ZHU Z H, ZHU Q H, SHEN S Y. A coaxial twin rotor helicopter with ducted thrust propeller: CN109665096A[P]. 2019-04-23(in Chinese).
    [8] BAGAI A. Aerodynamic design of the X2 technology demonstratorTM main rotor blade: 64-2008-000227[R]. Montreal: The American Helicopter Society, 2008: 1-16.
    [9] KENYON A R, BROWN R E, DURAISAMY K. Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight[J]. Aeronautical Journal, 2009, 113(1140): 65-78. doi: 10.1017/S0001924000002797
    [10] XU H Y, YE Z Y. Numerical simulation of unsteady flow around forward flight helicopter with coaxial rotors[J]. Chinese Journal of Aeronautics, 2011, 24(1): 1-7. doi: 10.1016/S1000-9361(11)60001-0
    [11] 李文浩. 复合式高速直升机旋翼/机身气动干扰特性的CFD分析[D]. 南京: 南京航空航天大学, 2012.

    LI W H. CFD analysis of rotor/fuselage aerodynamic interference characteristics of compound high speed helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [12] 张银. 复合式共轴刚性旋翼直升机气动干扰及飞行特性分析[D]. 南京: 南京航空航天大学, 2014.

    ZHANG Y. Aerodynamic interference and flight characteristics analysis of compound coaxial rigid rotor helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
    [13] 吴裕平, 习娟, 范俊. 共轴刚性旋翼高速直升机配平及旋翼系统气动特性研究[J]. 直升机技术, 2018, 2(1): 1-7. doi: 10.3969/j.issn.1673-1220.2018.01.001

    WU Y P, XI J, FAN J. Research on balancing and rotor system aerodynamic characteristics of coaxial rigid rotor high speed helicopter[J]. Journal of Helicopter Technology, 2018, 2(1): 1-7 (in Chinese). doi: 10.3969/j.issn.1673-1220.2018.01.001
    [14] 段赛玉, 陈铭. 复合式共轴直升机飞行动力学数学模型研究[J]. 飞机设计, 2011, 31(3): 1-6. doi: 10.3969/j.issn.1673-4599.2011.03.001

    DUAN S Y, CHEN M. Research on flight dynamics mathematical model of compound coaxial helicopter[J]. Aircraft Design, 2011, 31(3): 1-6(in Chinese). doi: 10.3969/j.issn.1673-4599.2011.03.001
    [15] 王倩楠. 复合推力高速直升机气动干扰特性分析[D]. 南京: 南京航空航天大学, 2021.

    WANG Q N. Analysis of aerodynamic interference characteristics of compound thrust high-speed helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021(in Chinese).
    [16] BLAZEK J. Computational fluid dynamics: Principles and applications, second edition[M]. Amsterdam: Elsevier, 2005: 16-18.
    [17] RAJAGOPALAN R G, LIM C K. Laminar flow analysis of a rotor in hover[J]. Journal of the American Helicopter Society, 1991, 36(1): 12-23. doi: 10.4050/JAHS.36.1.12
    [18] RAJAGOPALAN R G, MATHUR S R. Three dimensional analysis of a rotor in forward flight[J]. Journal of the American Helicopter Society, 1993, 38(3): 14-25. doi: 10.4050/JAHS.38.14
    [19] RAJAGOPALAN R G, BERG D E, KLIMAS P C. Development of a three-dimensional model for the Darrieus rotor and its wake[J]. Journal of Propulsion and Power, 1995, 11(2): 185-195. doi: 10.2514/3.51410
    [20] RAJAGOPALAN R G. A procedure for rotor performance, flow-field and interference——A perspective[C]//Proceedings of the 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
    [21] MCKEE J W, NAESETH R L. Experimental investigation of the drag of flat plates and cylinders in the slipstream of a hovering rotor: NASA-TN-4239[R]. Washington, D. C. : NASA, 1958: 1-43.
    [22] JOE W E, SUSAN L A, RICHARD H S. Inflow measurement made with a laser velocimeter on a helicopter model in forward flight. Volume 1: Rectangular planform blades at an advance ratio of 0.15: NASA-TM-100541 [R]. Washington, D. C. : NASA, 1998: 1-323.
    [23] FREEMAN C E, MINECK R E. Fuselage measurements of a helicopter wind-tunnel model with a 3.15-meter diameter single rotor: NASA-TM-80051[R]. Washington, D. C. : NASA, 1979: 1-170.
    [24] LEISHMAN J G, SYAL M. Figure of merit definition for coaxial rotors[J]. Journal of the American Helicopter Society, 2008, 53(3): 290-300. doi: 10.4050/JAHS.53.290
    [25] LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge: Cambridge University Press, 2006: 304-313.
    [26] TOROPOV M Y, STEPANOV S Y. Modeling of helicopter flight imitation in the vortex ring state[J]. Russian Aeronautics, 2016, 59(4): 517-522. doi: 10.3103/S1068799816040127
    [27] 王涌钦, 余新, 陈仁良, 等. 双螺旋桨推进复合式直升机操纵分配与最优过渡路线设计[J]. 南京航空航天大学学报, 2022, 54(2): 211-218.

    WANG Y Q, YU X, CHEN R L, et al. Redundant control and optimal transition route design of compound helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(2): 211-218(in Chinese).
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  78
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 录用日期:  2023-07-04
  • 网络出版日期:  2023-07-11
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答