留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于语义关系的单视图隐式场三维重建技术

徐岗 靳炯超 唐泽皓 冷彪

孙鹏伟, 王士敏, 王琪, 等 . 人体手端点到点运动的优化轨迹生成与控制[J]. 北京航空航天大学学报, 2010, 36(7): 826-829.
引用本文: 徐岗,靳炯超,唐泽皓,等. 基于语义关系的单视图隐式场三维重建技术[J]. 北京航空航天大学学报,2025,51(3):833-844 doi: 10.13700/j.bh.1001-5965.2023.0089
Sun Pengwei, Wang Shimin, Wang Qi, et al. Optimal trajectory formation and control of human arm point-to-point movement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 826-829. (in Chinese)
Citation: XU G,JIN J C,TANG Z H,et al. Semantic part based single-view implicit field for 3D shape reconstruction technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):833-844 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0089

基于语义关系的单视图隐式场三维重建技术

doi: 10.13700/j.bh.1001-5965.2023.0089
基金项目: 国家自然科学基金(61972014)
详细信息
    通讯作者:

    E-mail:lengbiao@buaa.edu.cn

  • 中图分类号: TP391.9

Semantic part based single-view implicit field for 3D shape reconstruction technology

Funds: National Natural Science Foundation of China (61972014)
More Information
  • 摘要:

    随着对深度学习的深入研究,基于隐式场的三维重建技术成为三维领域的研究热点,隐式场重建相比于显式重建得到了更好的重建结果,但仍存在缺少语义信息、重建结果缺失局部特征等缺点。针对现有的隐式场重建中存在的语义信息缺失问题,对隐式场重建算法提出改进,相比于直接由隐式解码器恢复出整体模型,改进方法选择先重建模型的各个语义零件,再将各个零件进行拼接得到整体模型,进而提高隐式场三维重建的完整度。基于改进方法,提出基于语义关系的多分支隐式重建网络,并在多个国际通用三维模型数据集中与现有隐式场重建算法在5个类别的模型上利用多项评价指标进行定量测试,取得了优于当前隐式场重建算法的重建结果。

     

  • 图 1  多分支隐式网络整体结构

    Figure 1.  Architecture of multi branch implicit network’s overall structure

    图 2  SDF值分布示意图

    Figure 2.  Visualization of the distribution of SDF values

    图 3  隐式场解码器结构

    Figure 3.  Architecture of implicit decoder

    图 4  PartNet定义的零件树

    Figure 4.  Tree structure in PartNet

    图 5  模型分割可视化(以椅子为例)

    Figure 5.  Visualization of semantic segmentation (taking chairs as an example)

    图 6  三维模型拼接算法流程

    Figure 6.  3D model stitching algorithm process

    图 7  残差单元结构

    Figure 7.  Architecture of residual unit

    图 8  重建结果可视化分析

    Figure 8.  Visualization and analysis of reconstruction result

    图 9  语义零件重建结果可视化

    Figure 9.  Visualization of semantic part reconstruction results

    表  1  语义分割后模型平均零件数量

    Table  1.   Average number of parts in the model after segmentation

    模型类别PartNet本文方法
    椅子18.333.36
    桌子5.242
    台灯11.352
    水槽13.022.66
    储物柜9.512
    下载: 导出CSV

    表  2  重建交并比结果

    Table  2.   Result of IoU

    模型类别IM-Net本文方法OCC-Net
    椅子41.5746.5642.05
    桌子58.7162.3759.15
    台灯38.3339.1239.10
    水槽37.1739.1534.98
    储物柜46.1648.2345.88
    下载: 导出CSV

    表  3  重建钱伯距离结果

    Table  3.   Result of rebuilding CD

    模型类别IM-Net本文方法OCC-Net
    椅子0.9730.9680.981
    桌子0.8350.7880.812
    台灯1.1501.0951.152
    水槽1.2051.1351.213
    储物柜1.0110.9831.001
    下载: 导出CSV

    表  4  重建时间及显存消耗

    Table  4.   Rebuild time and memory comparison

    算法名称重建时间/s显存开销/GB
    本文方法10.32.9
    IM-Net5.63.2
    OCC-Net6.23.5
    下载: 导出CSV
  • [1] LI M Y, ZHANG H. D2IM-Net: Learning detail disentangled implicit fields from single images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 10241-10250.
    [2] PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 165-174.
    [3] HORN B K P. Shape from shading: a method for obtaining the shape of a smooth opaque object from one view[M]. America: Project on Mathematics and Computation, 1970: 4-5.
    [4] 包晓敏, 白晨. 单目三维重建技术综述[J]. 智能计算机与应用, 2020, 10(7): 49-52. doi: 10.3969/j.issn.2095-2163.2020.07.011

    BAO X M, BAI C. Overview of monocular 3D reconstruction techniques[J]. Intelligent Computer and Applications, 2020, 10(7): 49-52(in Chinese). doi: 10.3969/j.issn.2095-2163.2020.07.011
    [5] GENG J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160. doi: 10.1364/AOP.3.000128
    [6] 陈荣, 许宏丽, 杨东学, 等. 一种基于空间编码结构光的稠密三维重建算法[J]. 西安电子科技大学学报, 2021, 48(6): 123-130.

    CHEN R, XU H L, YANG D X, et al. A dense 3D reconstruction algorithm based on spatially encoded structured light[J]. Journal of Xidian University, 2021, 48(6): 123-130(in Chinese).
    [7] SNAVELY N, SEITZ S M, SZELISKI R. Photo tourism: exploring photo collections in 3D[J]. ACM Transactions on Graphics, 2006, 25(3): 835-846. doi: 10.1145/1141911.1141964
    [8] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2002: 1150-1157.
    [9] CHOY C B, XU D F, GWAK J, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[M]//Lecture Notes in Computer Science. Berlin: Springer International Publishing, 2016: 628-644.
    [10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2023-01-01]. https://arxiv.org/abs/1409.1556.
    [11] WU J, ZHANG C, XUE T, et al. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: MIT Press, 2016: 82-90.
    [12] XIE H Z, YAO H X, SUN X S, et al. Pix2Vox: context-aware 3D reconstruction from single and multi-view images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 2690-2698.
    [13] WU J, WANG Y, XUE T, et al. Marrnet: 3D shape reconstruction via 2.5 d sketches[C]//Proceedings of the International Conference on Neural Information Processing Systems. New York: MIT Press, 2017: 171-190.
    [14] WANG H Q, YANG J L, LIANG W, et al. Deep single-view 3D object reconstruction with visual hull embedding[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8941-8948. doi: 10.1609/aaai.v33i01.33018941
    [15] PONTES J K, KONG C, SRIDHARAN S, et al. Image2Mesh: a learning framework for single image 3D reconstruction[M]//Lecture Notes in Computer Science. Berlin: Springer International Publishing, 2019: 365-381.
    [16] JACK D, PONTES J K, SRIDHARAN S, et al. Learning free-form deformations for 3D object reconstruction[M]//Lecture Notes in Computer Science. Berlin: Springer International Publishing, 2019: 317-333.
    [17] LI K J, PHAM T, ZHAN H Y, et al. Efficient dense point cloud object reconstruction using deformation vector fields[M]//Lecture Notes in Computer Science. Berlin: Springer International Publishing, 2018: 508-524.
    [18] KONG C, LIN C H, LUCEY S. Using locally corresponding CAD models for dense 3D reconstructions from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 5603-5611.
    [19] GROUEIX T, FISHER M, KIM V G, et al. A papier-Mache approach to learning 3D surface generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 216-224.
    [20] CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 5932-5941.
    [21] MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 4455-4465.
    [22] WANG T C, LIU M Y, ZHU J Y, et al. High-resolution image synthesis and semantic manipulation with conditional GANs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8798-8807.
    [23] BECHTOLD J, TATARCHENKO M, FISCHER V, et al. Fostering generalization in single-view 3D reconstruction by learning a hierarchy of local and global shape priors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 15875-15884.
    [24] MO K C, ZHU S L, CHANG A X, et al. PartNet: a large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 909-918.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  105
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 录用日期:  2023-05-08
  • 网络出版日期:  2023-07-10
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答