留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

充气式返回舱迎风面真实气体效应

何青松 孙素蓉

王平, 朱自强. 二维非结构网格的生成及其Euler方程解[J]. 北京航空航天大学学报, 2000, 26(2): 190-193.
引用本文: 何青松,孙素蓉. 充气式返回舱迎风面真实气体效应[J]. 北京航空航天大学学报,2025,51(3):816-823 doi: 10.13700/j.bh.1001-5965.2023.0093
WANG Ping, ZHU Zi-qiang. Generation of the 2D Unstructured Grids and the Euler Solution on It[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(2): 190-193. (in Chinese)
Citation: HE Q S,SUN S R. Real gas effect of inflatable reentry decelerator on windward side[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):816-823 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0093

充气式返回舱迎风面真实气体效应

doi: 10.13700/j.bh.1001-5965.2023.0093
基金项目: 国家自然科学基金(12005014,12005010)
详细信息
    通讯作者:

    E-mail:heqs2021@sina.com

  • 中图分类号: V445.4

Real gas effect of inflatable reentry decelerator on windward side

Funds: National Natural Science Foundation of China (12005014,12005010)
More Information
  • 摘要:

    分别采用空气9组分化学非平衡模型和基于理想气体假设模型对充气式返回舱再入流场进行数值模拟,考察2种方法计算结果的差异,研究真实气体效应的表现形式,探究充气式返回舱真实气体效应与刚性返回舱真实气体效应存在差异的原因。研究结果表明:相比于理想气体假设,真实气体效应使激波位置更靠近壁面,激波后空气温度降低,壁面热流密度下降;在飞行高度为83 km处,激波后气体比热比高于1.4,空气发生解离反应,而在飞行高度为73 km处真实气体效应的作用较弱,激波后空气的比热比维持在1.4,空气仍以分子的形式存在;导致充气式返回舱与刚性返回舱在相同高度范围真实气体强弱差异的主要原因是充气式返回舱的阻重比相较于刚性返回舱更大,进入大气后速度下降更快,在相同高度速度更低。

     

  • 图 1  计算域

    Figure 1.  Computational domain

    图 2  网格无关性验证

    Figure 2.  Grid independence test

    图 3  半球模型壁面热流密度计算结果与实验结果比较

    Figure 3.  Comparison between calculation and experimental results of heat flux densities on wall of hemisphere model

    图 4  圆柱体模型计算结果与实验结果比较

    Figure 4.  Comparison between calculation and experimental results of cylinder model

    图 5  流场中马赫数分布

    Figure 5.  Mach number distribution in flow field

    图 6  沿轴线温度分布

    Figure 6.  Temperature distribution along axis

    图 7  沿轴线热导率分布

    Figure 7.  Thermal conductivity distribution along axis

    图 8  沿壁面热流密度分布

    Figure 8.  Heat flux density distribution along wall

    图 9  沿轴线比热比

    Figure 9.  Specific heat ratio along axis

    图 10  沿轴线各组分摩尔分数

    Figure 10.  Mole fraction of each component along axis

    图 11  速度随高度的变化(双子座飞船、航天飞机、Titans)

    Figure 11.  Variation of speed with altitude (Gemini, Space Shuttle, and Titans)

    表  1  计算工况的来流参数

    Table  1.   Inflow parameters of operating conditions

    飞行高度/km 速度/(m·s−1 密度/(kg·m−3 温度/K
    73 2396 5.125×10−5 211.5
    83 5081 1.105×10−5 191.2
    下载: 导出CSV
  • [1] FURUYA H, MURATA S, NAKAHARA M, et al. Concept of inflatable tensegrity for large space structures[C]// Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006.
    [2] 卫剑征, 谭惠丰, 王伟志, 等. 充气式再入减速器研究最新进展[J]. 宇航学报, 2013, 34(7): 881-890.

    WEI J Z, TAN H F, WANG W Z, et al. New trends in inflatable re-entry aeroshell[J]. Journal of Astronautics, 2013, 34(7): 881-890(in Chinese).
    [3] HILLJE E R, SAVAGE R. Status of the aerodynamic characteristics of the Apollo entry configuration[C]// Proceedings of the Entry Vehicle Systems and Technology Meeting. Reston: AIAA, 1968.
    [4] WATANABE S, ISHIMOTO S, YAMAMOTO Y. Aerodynamic characteristics evaluation of hypersonic flight experiment vehicle based on flight data[J]. Journal of Spacecraft and Rockets, 1997, 34(4): 464-470. doi: 10.2514/2.3259
    [5] HOLDEN M, WADHAMS T, MACLEAN M, et al. Experimental studies in LENS I and X to evaluate real gas effects on hypervelocity vehicle performance[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
    [6] GUO J H, LIN G P, BU X Q, et al. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator[J]. Acta Astronautica, 2017, 136: 421-433. doi: 10.1016/j.actaastro.2017.03.019
    [7] TAKAHASHI Y, KOIKE T, OSHIMA N, et al. Aerothermodynamic analysis for deformed membrane of inflatable aeroshell in orbital reentry mission[J]. Aerospace Science and Technology, 2019, 92: 858-868. doi: 10.1016/j.ast.2019.06.047
    [8] TAKAHASHI Y, HA D, OSHIMA N, et al. Aerodecelerator performance of flare-type membrane inflatable vehicle in suborbital reentry[J]. Journal of Spacecraft and Rockets, 2017, 54(5): 993-1004. doi: 10.2514/1.A33682
    [9] MAZAHERI A. High-energy atmospheric reentry test aerothermodynamic analysis[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 270-281. doi: 10.2514/1.A32407
    [10] TAKAHASHI Y, YAMADA K. Aerodynamic heating of inflatable aeroshell in orbital reentry[J]. Acta Astronautica, 2018, 152: 437-448. doi: 10.1016/j.actaastro.2018.08.003
    [11] MITCHNER M, KRUGER C. Partially ionized gases[M]. New York: Wiley, 1973.
    [12] WILKE C R. A viscosity equation for gas mixtures[J]. Journal of Chemical Physics, 1950, 18(4): 517-519. doi: 10.1063/1.1747673
    [13] RAMSHAW J D. Self-consistent effective binary diffusion in multicomponent gas mixtures[J]. Journal of Non-Equilibrium Thermodynamics, 1990, 15(3): 295-300.
    [14] RAMSHAW J D, CHANG C H. Ambipolar diffusion in two-temperature multicomponent plasmas[J]. Plasma Chemistry and Plasma Processing, 1993, 13(3): 489-498. doi: 10.1007/BF01465878
    [15] RAMSHAW J D. Hydrodynamic theory of multicomponent diffusion and thermal diffusion in multitemperature gas mixtures[J]. Journal of Non Equilibrium Thermodynamics, 1993, 18(2): 121-134.
    [16] WANG H X, HE Q S, MURPHY A B, et al. Numerical simulation of nonequilibrium species diffusion in a low-power nitrogen-hydrogen arcjet thruster[J]. Plasma Chemistry and Plasma Processing, 2017, 37(3): 877-895. doi: 10.1007/s11090-017-9807-9
    [17] MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 470-475. doi: 10.2514/1.A32327
    [18] HANNEMANN K, SCHRAMM J M, KARL S, et al. Cylinder shock layer density profiles measured in high enthalpy flows in HEG[C]// Proceedings of the 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference . Reston: AIAA, 2002.
    [19] 杨建龙, 刘猛, 阿嵘. 高超声速热化学非平衡对气动热环境影响[J]. 北京航空航天大学学报, 2017, 43(10): 2063-2072.

    YANG J L, LIU M, A R. Influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2063-2072(in Chinese).
    [20] PRABHU D, PAPADOPOULOS P, DAVIES C, et al. Shuttle orbiter contingency abort aerodynamics, II: real-gas effects and high angles of attack[C]// Proceedings of the Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
    [21] SHINN J, MOSS J, SIMMONDS A. Viscous-shock-layer heating analysis for the shuttle windward-symmetry plane with surface finite catalytic recombination rates[C]// Proceedings of the 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference. Reston: AIAA, 1982.
    [22] PEZZELLA G, VOTTA R. Finite rate of chemistry effects on the high altitude aerodynamics of an Apollo-shaped reentry capsule [C]// Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009.
    [23] YOUNG K A, OSGOOD C T. Preflight orbital and reentry trajectory data for Gemini VI[R]. Washington, D. C. : NASA, 1965: 1-114.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  276
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 录用日期:  2023-06-05
  • 网络出版日期:  2023-06-30
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答