留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于监督对比学习的无线电引信干扰识别方法

钱鹏飞 秦高林 陈齐乐 郝新红

于洋, 刘二莉, 周铁涛, 等 . 边界追踪及Freeman码在定量金相中的应用[J]. 北京航空航天大学学报, 2004, 30(08): 767-770.
引用本文: 钱鹏飞,秦高林,陈齐乐,等. 基于监督对比学习的无线电引信干扰识别方法[J]. 北京航空航天大学学报,2025,51(3):953-961 doi: 10.13700/j.bh.1001-5965.2023.0128
Yu Yang, Liu Erli, Zhou Tietao, et al. Application of boundary-tracing and Freeman code in quantitative metallography[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(08): 767-770. (in Chinese)
Citation: QIAN P F,QIN G L,CHEN Q L,et al. A recognition method of radio fuze signal based on supervised contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):953-961 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0128

基于监督对比学习的无线电引信干扰识别方法

doi: 10.13700/j.bh.1001-5965.2023.0128
详细信息
    通讯作者:

    E-mail:haoxinhong@bit.edu.cn

  • 中图分类号: TJ43+4.1

A recognition method of radio fuze signal based on supervised contrastive learning

More Information
  • 摘要:

    连续波调频多普勒引信在战场上容易受到干扰,从而导致弹药早炸失去毁伤能力。为了提高调频多普勒引信对信息型干扰的抗干扰能力,实现多种干扰信号与目标回波的区分,提出一种基于监督对比学习的目标与干扰信号分类识别方法。该方法首先通过残差网络和自注意力机制搭建了主干网络;然后利用引入标签的方式改进了对比学习损失函数,实现了监督对比学习;最后采用中频信号搭建数据集,通过监督对比学习的方式来训练网络,从而实现对目标与干扰信号的分类和识别。仿真结果表明:该方法能够实现多种干扰种类与目标回波的识别,并且识别率能够达到98.7%。在低信噪比环境下的识别效果更为出色,在信噪比为−18 dB的环境下,仍然能有91.81%的识别率,相比普通残差网络的86.12%的识别率更高。

     

  • 图 1  引信结构图

    Figure 1.  Fuze structure

    图 2  检波输出图

    Figure 2.  Detection output

    图 3  监督对比学习的训练方式

    Figure 3.  Training mode of supervised contrastive learning

    图 4  网络结构

    Figure 4.  Network structure

    图 5  卷积原理

    Figure 5.  Principle of convolution

    图 6  残差块结构图

    Figure 6.  Residual block structure

    图 7  自注意力机制原理

    Figure 7.  Principle of self-attention mechanism

    图 8  混淆矩阵图

    Figure 8.  Confusion matrix

    图 9  二维散点图

    Figure 9.  2D scatterplots

    图 10  箱型图

    Figure 10.  Box plot

    图 11  不同信噪比下的识别率

    Figure 11.  Recognition rate under different SNRs

  • [1] 代健, 晏祺, 闫晓鹏, 等. 基于模糊c-均值增量更新的脉冲多普勒引信干扰与目标信号识别[J]. 兵工学报, 2018, 39(9): 1711-1718.

    DAI J, YAN Q, YAN X P, et al. Recognition of jamming and target signal for pulse Doppler fuze based on FCM algorithm with incremental update[J]. Acta Armamentarii, 2018, 39(9): 1711-1718(in Chinese).
    [2] 代健, 李泽, 郝新红, 等. 基于目标联合特征提取的脉冲多普勒引信抗干扰方法[J]. 兵工学报, 2019, 40(2): 225-233.

    DAI J, LI Z, HAO X H, et al. Anti-jamming method for pulse Doppler fuze based on joint feature extraction of target signal[J]. Acta Armamentarii, 2019, 40(2): 225-233(in Chinese).
    [3] DAI J, HAO X H, LI Z, et al. Adaptive target and jamming recognition for the pulse Doppler radar fuze based on a time-frequency joint feature and an online-updated naive Bayesian classifier with minimal risk[J]. Defence Technology, 2022, 18(3): 457-466. doi: 10.1016/j.dt.2021.02.008
    [4] 张彪, 闫晓鹏, 栗苹, 等. 基于支持向量机的无线电引信抗扫频式干扰研究[J]. 兵工学报, 2016, 37(4): 635-640.

    ZHANG B, YAN X P, LI P, et al. Research on anti-frequency sweeping jamming of radio fuze based on support vector machine[J]. Acta Armamentarii, 2016, 37(4): 635-640(in Chinese).
    [5] 李志强. 连续波多普勒无线电引信目标信号识别方法研究[D]. 北京: 北京理工大学, 2014.

    LI Z Q. Research on target signal identification method of continuous wave Doppler radio fuze[D]. Beijing: Beijing Institute of Technology, 2014(in Chinese).
    [6] 郝新红, 杜涵宇, 陈齐乐. 调频引信粗糙面目标与干扰信号识别[J]. 北京航空航天大学学报, 2019, 45(10): 1946-1955.

    HAO X H, DU H Y, CHEN Q L. Rough surface target and jamming signal recognition of FM fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1946-1955(in Chinese).
    [7] 黄莹, 郝新红, 孔志杰, 等. 基于熵特征的调频引信目标与干扰信号识别[J]. 兵工学报, 2017, 38(2): 254-260.

    HUANG Y, HAO X H, KONG Z J, et al. Recognition of target and jamming signal for FM fuze based on entropy features[J]. Acta Armamentarii, 2017, 38(2): 254-260(in Chinese).
    [8] 吴礼洋, 呙鹏程, 刘超, 等. 基于注意力机制增强残差网络的雷达信号调制类型识别[J]. 兵工学报, 2023, 44(8): 2310-2318.

    WU L Y, WU P C, LIU C, et al. Radar signal modulation type recognition based on attention mechanism enhanced residual network[J]. Journal of Ordnance Engineering, 2023, 44(8): 2310-2318(in Chinese).
    [9] 瞿奇哲. 基于深度学习的雷达信号识别[D]. 成都: 电子科技大学, 2021.

    QU Q Z. Radar signal recognition based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2021(in Chinese).
    [10] 刘国满, 聂旭娜. 一种基于卷积神经网络的雷达干扰识别算法[J]. 北京理工大学学报, 2021, 41(9): 990-998.

    LIU G M, NIE X N. A radar jamming recognition algorithm based on convolutional neural network[J]. Transactions of Beijing Institute of Technology, 2021, 41(9): 990-998(in Chinese).
    [11] 崔占忠, 宋世和, 徐立新. 近炸引信原理 [M]. 第3 版. 北京: 北京理工大学出版社, 2009: 76-100.

    CUI Z Z, SONG S H, XU L X. Principle of proximity fuze [M]. 3 ed. Beijing: Beijing Institute of Technology Press, 2009: 76 -100(in Chinese).
    [12] KHOSLA P, TETERWARK P, WANG C, et al. Supervised contrastive learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 18661-18673.
    [13] WANG Q, DU P F, YANG J Y, et al. Transferred deep learning based waveform recognition for cognitive passive radar[J]. Signal Processing, 2019, 155: 259-267. doi: 10.1016/j.sigpro.2018.09.038
    [14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
    [15] 左环宇, 郝新红, 岳凯. 调频多普勒引信抗调幅干扰性能分析[J]. 北京航空航天大学学报, 2017, 43(10): 2163-2170.

    ZUO H Y, HAO X H, YUE K. Anti-AM jamming performance analysis of FM Doppler fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2163-2170(in Chinese).
    [16] 李泽, 闫晓鹏, 栗苹, 等. 扫频式干扰对调频多普勒引信的干扰机理研究[J]. 兵工学报, 2017, 38(9): 1716-1722.

    LI Z, YAN X P, LI P, et al. Jamming mechanism of frequency sweep jamming to FM Doppler fuze[J]. Acta Armamentarii, 2017, 38(9): 1716-1722(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  71
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 录用日期:  2023-06-30
  • 网络出版日期:  2023-07-19
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答