留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴压铝合金蜂窝圆筒整体稳定性研究

魏家睿 吴琼 吴伟 李群智 时红伟 张虞

智文静,李建刚,张晨,等. 一种新型登机门开启限速装置的设计[J]. 北京航空航天大学学报,2024,50(5):1532-1540 doi: 10.13700/j.bh.1001-5965.2022.0714
引用本文: 魏家睿,吴琼,吴伟,等. 轴压铝合金蜂窝圆筒整体稳定性研究[J]. 北京航空航天大学学报,2025,51(3):962-972 doi: 10.13700/j.bh.1001-5965.2023.0135
ZHI W J,LI J G,ZHANG C,et al. Design of a new opening and speed limiting mechanism of passenger door[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1532-1540 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0714
Citation: WEI J R,WU Q,WU W,et al. Study on global stability of aluminum alloy honeycomb cylinder under axial compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):962-972 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0135

轴压铝合金蜂窝圆筒整体稳定性研究

doi: 10.13700/j.bh.1001-5965.2023.0135
基金项目: 国家自然科学基金(51875024);民用航天技术预先研究项目(D020304)
详细信息
    通讯作者:

    E-mail:wuqiong@buaa.edu.cn

  • 中图分类号: TH122

Study on global stability of aluminum alloy honeycomb cylinder under axial compression

Funds: National Natural Science Foundation of China (51875024); Civil Space Technology Pre-Research Program (D020304)
More Information
  • 摘要:

    金属蜂窝圆筒结构常因轴压整体屈曲导致承载能力下降,对于其弹性屈曲问题目前已有大量研究,但在塑性屈曲问题方面的理论研究工作较少。为解决上述问题,基于蜂窝圆筒等效模型和Hamilton原理,推导了铝合金蜂窝圆筒承受轴压载荷作用时弹、塑性屈曲临界载荷的理论计算公式,并进行了轴压仿真分析和实验验证,利用理论公式讨论了蜂窝圆筒各尺寸参数对临界载荷的影响。结果表明:所提理论公式和仿真模型均能准确预测铝合金蜂窝圆筒的临界载荷,理论公式计算效率更高;圆筒质量变化±10%时,影响临界载荷的因素依次为面板厚度、圆筒半径、芯子厚度、圆筒高度;蜂窝圆筒的临界载荷与芯子厚度、面板厚度、圆筒半径近似呈线性正相关,与圆筒高度关系较弱。

     

  • 图 1  蜂窝圆筒示意图

    Figure 1.  Schematic diagram of honeycomb cylinder

    图 2  蜂窝胞元排列方式

    Figure 2.  Honeycomb cell arrangement

    图 3  蜂窝单胞结构示意图

    Figure 3.  Schematic diagram of honeycomb single cell structure

    图 4  三明治夹芯等效法示意图

    Figure 4.  Schematic diagram of sandwich core equivalent method

    图 5  双线性硬化模型示意图

    Figure 5.  Schematic diagram of bilinear hardening model

    图 6  蜂窝圆筒轴压有限元分析模型

    Figure 6.  Finite element analysis model of honeycomb cylinder under axial compression

    图 7  蜂窝圆筒轴压实验现场

    Figure 7.  Honeycomb cylinder axial compression test site

    图 8  蜂窝圆筒轴压屈曲模式示意图

    Figure 8.  Schematic diagram of honeycomb cylinder buckling mode under axial compression

    图 9  蜂窝圆筒轴压实验载荷-位移曲线

    Figure 9.  Load-displacement curves of honeycomb cylindrical axial compression test

    图 10  蜂窝圆筒载荷-位移曲线汇总

    Figure 10.  Summary of honeycomb cylinder load-displacement curves

    图 11  蜂窝圆筒轴压临界载荷结果汇总

    Figure 11.  Summary of honeycomb cylinder axial compression critical load results

    图 12  几何参数变化对3种蜂窝圆筒临界载荷的影响

    Figure 12.  Influence of geometric parameters on critical loads of three kinds of honeycomb cylinders

    表  1  3种铝合金蜂窝圆筒的尺寸参数

    Table  1.   Dimensional parameters of three aluminum alloy honeycomb cylinders

    圆筒编号b/mmd/mmR/mmH/mmt/mml0/mm
    圆筒112.61.2692.511000.26
    圆筒222.61.2687.511000.26
    圆筒337.61.2114011000.26
    下载: 导出CSV

    表  2  面板和蜂窝芯材料的弹性参数

    Table  2.   Elastic parameters of panel and honeycomb core materials

    材料名称 弹性模量/MPa 泊松比 密度/(kg·m−3
    6A02 63000 0.33 2700
    3003 69000 0.33 2730
    下载: 导出CSV

    表  3  蜂窝圆筒的蜂窝芯等效参数

    Table  3.   Equivalent parameters of honeycomb core of honeycomb cylinder

    等效参数圆筒1圆筒2圆筒3
    Eex/MPa5.69265.53615.5350
    Eeθ/MPa5.89555.90625.9062
    Eez/MPa3533.13526.63526.6
    Ge /MPa3.48963.44823.4479
    Gexz/MPa984.811973.845973.763
    Geθz/MPa500.343501.247501.254
    μe0.9970.9970.997
    μexz5.32×10−45.18×10−45.18×10−4
    μeθz5.51×10−45.53×10−45.53×10−4
    ρe/(kg·m−3)139.31138.67138.66
    下载: 导出CSV

    表  4  质量变化率由−10%~+10%时临界载荷的变化率

    Table  4.   Critical load change rate when mass change rate is from −10% to +10%

    参数 临界载荷变化率/% 平均值/%
    圆筒1 圆筒2 圆筒3
    芯子厚度 +16.7 +17.1 +9.88 +14.6
    面板厚度 +29.8 +36.1 +46.6 +37.5
    圆筒半径 +18.1 +16.1 +14.6 +16.3
    圆筒高度 −0.06 −0.25 +1.12 +0.27
    下载: 导出CSV

    表  5  蜂窝圆筒尺寸参数与临界载荷的相关系数

    Table  5.   Correlation coefficient between dimension parameters and critical load of honeycomb cylinder

    参数 相关系数 平均值
    圆筒1 圆筒2 圆筒3
    芯子厚度 0.999 9 0.999 0 0.998 6 0.999 2
    面板厚度 0.999 9 0.999 9 0.999 9 0.999 9
    圆筒半径 0.999 9 0.999 9 0.999 9 0.999 9
    圆筒高度 −0.545 7 0.648 5 0.926 8 0.343 2
    下载: 导出CSV
  • [1] HUANG S Z, JIN Z Y, CHEN Y. Underwater blast resistance of double cylindrical shells with circular tube stiffeners[J]. Ocean Engineering, 2021, 238: 109691. doi: 10.1016/j.oceaneng.2021.109691
    [2] TENG J G, HU Y M. Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression[J]. Construction and Building Materials, 2007, 21(4): 827-838. doi: 10.1016/j.conbuildmat.2006.06.016
    [3] LAN X K, FENG S S, HUANG Q, et al. A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores[J]. Aerospace Science and Technology, 2019, 87: 37-47. doi: 10.1016/j.ast.2019.01.031
    [4] CAI L C, ZHANG D Y, ZHOU S H, et al. Investigation on mechanical properties and equivalent model of aluminum honeycomb sandwich panels[J]. Journal of Materials Engineering and Performance, 2018, 27(12): 6585-6596. doi: 10.1007/s11665-018-3771-2
    [5] 骆洪志, 郭彦明, 吴会强. 直径五米大型箭体结构设计与优化[J]. 深空探测学报(中英文), 2021, 8(4): 380-388.

    LUO H Z, GUO Y M, WU H Q. Structural design and optimization of Φ5 m diameter large arrow body[J]. Journal of Deep Space Exploration, 2021, 8(4): 380-388(in Chinese).
    [6] LI Q, YANG D Q, MAO X. Pressure-resistant cylindrical shell structures comprising graded hybrid zero Poisson’s ratio metamaterials with designated band gap characteristics[J]. Marine Structures, 2022, 84: 103221. doi: 10.1016/j.marstruc.2022.103221
    [7] TIWARI G, KHAIRE N. Ballistic performance and energy dissipation characteristics of cylindrical honeycomb sandwich structure[J]. International Journal of Impact Engineering, 2022, 160: 104065. doi: 10.1016/j.ijimpeng.2021.104065
    [8] ALMROTH B O, BURNS A B, PITTNER E V. Design criteria for axially loaded cylindrical shells[J]. Journal of Spacecraft and Rockets, 1970, 7(6): 714-720. doi: 10.2514/3.30025
    [9] 祝恩淳, MANDAL P, CALLADINE C R. 轴压圆柱薄壳的屈曲分析[J]. 土木工程学报, 2001, 34(3): 18-22. doi: 10.3321/j.issn:1000-131X.2001.03.004

    ZHU E C, MANDAL P, CALLADINE C R. Analysis of buckling of thin cylindrical shells under axial compression[J]. China Civil Engineering Journal, 2001, 34(3): 18-22(in Chinese). doi: 10.3321/j.issn:1000-131X.2001.03.004
    [10] ANSARI Q M, TRINH L C, ZUCCO G, et al. Effect of elastic support on the linear buckling response of quasi-isotropic cylindrical shells under axial compression[J]. Engineering Structures, 2021, 244: 112796. doi: 10.1016/j.engstruct.2021.112796
    [11] LAI A D, JIA J F, ZHOU Z H, et al. Homotopic analysis for post-buckling of cylindrical shells with local thickness defects[J]. Acta Astronautica, 2022, 193: 44-55. doi: 10.1016/j.actaastro.2022.01.005
    [12] SHAMASS R, ALFANO G, GUARRACINO F. A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression[J]. Engineering Structures, 2014, 75: 429-447. doi: 10.1016/j.engstruct.2014.05.050
    [13] LEGENDRE J, LE GROGNEC P, DOUDARD C, et al. Analytical, numerical and experimental study of the plastic buckling behavior of thick cylindrical tubes under axial compression[J]. International Journal of Mechanical Sciences, 2019, 156: 494-505. doi: 10.1016/j.ijmecsci.2019.03.002
    [14] EVKIN A, LYKHACHOVA O. Energy barrier method for estimation of design buckling load of axially compressed elasto-plastic cylindrical shells[J]. Thin-Walled Structures, 2021, 161: 107454. doi: 10.1016/j.tws.2021.107454
    [15] RAJABIEHFARD R, DARVIZEH A, ALITAVOLI M, et al. Experimental and numerical investigation of dynamic plastic behavior of tube with different thickness distribution under axial impact[J]. Thin-Walled Structures, 2016, 109: 174-184. doi: 10.1016/j.tws.2016.08.017
    [16] 张靖华, 郑武. 功能梯度圆柱壳的弹塑性屈曲[J]. 兰州理工大学学报, 2021, 47(5): 167-172. doi: 10.3969/j.issn.1673-5196.2021.05.025

    ZHANG J H, ZHENG W. Elastoplastic buckling of functionally graded cylindrical shells[J]. Journal of Lanzhou University of Technology, 2021, 47(5): 167-172(in Chinese). doi: 10.3969/j.issn.1673-5196.2021.05.025
    [17] HOU X H, ZHOU S Q, CHENG Z W, et al. Buckling of regular and auxetic honeycombs under a general macroscopic stress state in symplectic system[J]. Applied Mathematical Modelling, 2022, 109: 318-340. doi: 10.1016/j.apm.2022.04.033
    [18] ZHANG C W, EYVAZIAN A, ALKHEDHER M, et al. Modified couple stress theory application to analyze mechanical buckling behavior of three-layer rectangular microplates with honeycomb core and piezoelectric face sheets[J]. Composite Structures, 2022, 292: 115582. doi: 10.1016/j.compstruct.2022.115582
    [19] 赵杰, 张娟, 蒋晓琴, 等. 不同压缩工况下焊接缺陷对钎焊铝蜂窝板承载能力的影响[J]. 机械工程材料, 2020, 44(12): 97-102.

    ZHAO J, ZHANG J, JIANG X Q, et al. Influence of welding defects on bearing capacity of brazed aluminum honeycomb panel under different compression conditions[J]. Materials for Mechanical Engineering, 2020, 44(12): 97-102(in Chinese).
    [20] 王宝芹, 王沫楠, 刘长喜. 基于多尺度方法的蜂窝夹层复合材料结构轴向压缩稳定性[J]. 复合材料学报, 2020, 37(3): 601-608.

    WANG B Q, WANG M N, LIU C X. Stability of honeycomb sandwich composite structure under axial compression based on multi-scale method[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 601-608(in Chinese).
    [21] ZHANG Z J, WANG Y J, HUANG L, et al. Mechanical behaviors and failure modes of sandwich cylinders with square honeycomb cores under axial compression[J]. Thin-Walled Structures, 2022, 172: 108868. doi: 10.1016/j.tws.2021.108868
    [22] PAN D R, CHEN L, ZHAO Q L, et al. Local buckling theoretical calculation method of the FRP foam sandwich cylinder under axial compression[J]. Composite Structures, 2020, 246: 112371. doi: 10.1016/j.compstruct.2020.112371
    [23] 王颖坚, 徐颖. 复合材料夹层板的塑性屈曲[J]. 北京大学学报(自然科学版), 1993, 29(1): 48-56.

    WANG Y J, XU Y. Plastic buckling of composite sandwich plates[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 1993, 29(1): 48-56(in Chinese).
    [24] 刘强, 黄争呜. 金属蜂窝材料的弹塑性屈曲临界应力值[J]. 力学季刊, 2008, 29(4): 515-520.

    LIU Q, HUANG Z W. Elasto-plastic buckling critical stress of metal honeycomb[J]. Chinese Quarterly of Mechanics, 2008, 29(4): 515-520(in Chinese).
    [25] 李贤冰, 温激鸿, 郁殿龙, 等. 蜂窝夹层板力学等效方法对比研究[J]. 玻璃钢/复合材料, 2012(增刊1): 11-15.

    LI X B, WEN J H, YU D L, et al. The comparative study of equivalent mechanical methods on honeycomb sandwich plate[J]. Composites Science and Engineering, 2012(Sup 1): 11-15(in Chinese).
    [26] 沈元星, 侯文彬. 基于双曲面蜂窝夹层结构等效模型的研究及数值分析[J]. 计算力学学报, 2022, 39(2): 209-215.

    SHEN Y X, HOU W B. Equivalent models research and numerical analysis based on double curved honeycomb sandwich structure[J]. Chinese Journal of Computational Mechanics, 2022, 39(2): 209-215(in Chinese).
    [27] 陈明祥. 弹塑性力学[M]. 北京: 科学出版社, 2007: 278-281.

    CHEN M X. Elasticity and plasticity[M]. Beijing: Science Press, 2007: 278-281(in Chinese).
    [28] 闻邦椿. 机械设计手册(第1卷)[M]. 5版. 北京: 机械工业出版社, 2010: 25-26.

    WEN B C. Machine design handbook (Vol. 1)[M]. 5th ed. Beijing: China Machine Press, 2010: 25-26(in Chinese).
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  84
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 录用日期:  2023-07-07
  • 网络出版日期:  2023-08-03
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答