留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于联系云的飞机轮胎滑水风险可拓评价模型

李岳 周则圆 蔡靖

艾骏, 陆民燕, 刘斌等 . 实时嵌入式软件测试输入的可视化建模[J]. 北京航空航天大学学报, 2004, 30(02): 156-159.
引用本文: 李岳,周则圆,蔡靖. 基于联系云的飞机轮胎滑水风险可拓评价模型[J]. 北京航空航天大学学报,2025,51(3):705-711 doi: 10.13700/j.bh.1001-5965.2023.0136
Ai Jun, Lu Minyan, Liu Binet al. Visual modeling method for test inputs of real-time embedded software[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(02): 156-159. (in Chinese)
Citation: LI Y,ZHOU Z Y,CAI J. Extensible evaluation model of aircraft tire hydroplaning risk based on connection cloud[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):705-711 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0136

基于联系云的飞机轮胎滑水风险可拓评价模型

doi: 10.13700/j.bh.1001-5965.2023.0136
基金项目: 国家自然科学基金(52472369);中央高校基本科研业务费专项资金(3122019103);民航机场智能建造与工业化工程技术研究中心开放课题(MHJGKFKT-01,MHJGKFKT-04)
详细信息
    通讯作者:

    E-mail:jcai@cauc.edu.cn

  • 中图分类号: U416.217;V351.11

Extensible evaluation model of aircraft tire hydroplaning risk based on connection cloud

Funds: National Natural Science Foundation of China (52472369); The Fundamental Research Funds for the Central Universities (3122019103); Open Project of the Intelligent Construction and Industrialization Engineering Technology Research Center of Civil Aviation Airport (MHJGKFKT-01,MHJGKFKT-04)
More Information
  • 摘要:

    针对飞机轮胎滑水问题影响因素多、评价指标具备随机模糊与离散性特征问题,基于联系云可拓理论建立滑水风险评价模型,定量描述滑水评价指标在不同分类等级之间的转换态势。根据评价指标分级标准确定联系云数字特征,生成有限区间内联系云,由云相关度构建联系云可拓矩阵,结合变权权重综合评定最终风险等级,表征待评价物元与风险等级之间的动态联系;依托飞机轮胎滑水流固耦合仿真获得案例分析数据,弥补经典滑水试验工况变量条件少的不足。分析结果表明:传统正态云模型与可拓联系云模型对滑水事件样本1和样本3评价结论一致;对于样本2,由所提方法计算滑水风险等级为Ⅲ级,同等参数条件下风险控制标准更严格,上述样本风险评价置信因子均小于0.01,评价可信程度较高;所提分析模型为多重不相容指标的随机模糊及不确定性分析提供了可能,克服了正态云模型无法有效模拟指标在有限区间内分布的缺陷。

     

  • 图 1  联系云模型数字特征

    Figure 1.  Numerical characteristic of connection cloud model

    图 2  基于联系云的ATH可拓评价流程

    Figure 2.  Extension evaluation process of ATH based on connection cloud

    图 3  典型轮胎滑水CEL算法仿真模型

    Figure 3.  Typical simulation model of tire hydroplaning based on coupled Eulerian-Lagrangian algorithm

    图 4  评价指标隶属ATH风险等级标准联系云

    Figure 4.  Standard connection clouds of evaluation index under different membership of ATH risk grades

    表  1  ATH风险等级评价指标分类标准

    Table  1.   Classification standards of evaluation indexes for ATH risk grades

    风险
    等级
    滑行速度/
    (km∙h−1)
    积水厚度/
    mm
    摩擦
    系数
    单轮轴载/
    kN
    刻槽深度/
    mm
    ≤200 ≤5 >0.7 >123.1 >5
    ≤230 ≤8 ≤0.7 ≤123.1 ≤5
    ≤260 ≤11 ≤0.6 ≤107.3 ≤4
    >260 >11 ≤0.6 ≤91.7 ≤3
    下载: 导出CSV

    表  2  滑水事故征候跑道运行参数组合

    Table  2.   Parameter combination of operating runway of hydroplaning symptoms

    样本 滑行速度/
    (km∙h−1)
    积水厚度/
    mm
    单轮轴载/
    kN
    刻槽深度/
    mm
    摩擦
    系数
    1 220 3 138.8 6 0.76
    2 250 5 100.4 5 0.66
    3 280 8 76.5 2 0.60
    下载: 导出CSV

    表  3  ATH风险安全性评价结果及对比

    Table  3.   Safety evaluation results of ATH risks and comparison

    样本 综合云相关度 置信因子 稳定性等级与起降条件
    本文方法 正态云法 规范判定
    1 0.9229 0.0687 0.0082 0 0.0039 允许起降
    2 0.2127 0.4418 0.3903 0.0376 0.0012 允许起降
    3 0.0007 0.1713 0.2885 0.5462 0.0083 允许起降
    下载: 导出CSV
  • [1] 赵安家, 孙丽莹, 孟哲理. 飞机轮胎滑水与预防控制措施研究综述[J]. 飞机设计, 2015, 35(5): 46-51.

    ZHAO A J, SUN L Y, MENG Z L. A search for mechanism and preventability measure of the aircraft tire hydroplaning[J]. Aircraft Design, 2015, 35(5): 46-51(in Chinese).
    [2] 蔡靖, 许诤. 沟槽磨损对飞机轮胎滑水影响仿真分析[J]. 中国民航大学学报, 2020, 38(2): 38-43. doi: 10.3969/j.issn.1674-5590.2020.02.008

    CAI J, XU Z. Simulation analysis on influence of groove abrasion on aircraft hydroplaning[J]. Journal of Civil Aviation University of China, 2020, 38(2): 38-43(in Chinese). doi: 10.3969/j.issn.1674-5590.2020.02.008
    [3] 许诤. 考虑道面平整度的飞机轮胎滑水安全问题研究[D]. 天津: 中国民航大学, 2019: 10-23.

    XU Z. Study on water skiing safety of aircraft tires considering pavement smoothness[D]. Tianjin: Civil Aviation University of China, 2019: 10-23(in Chinese).
    [4] 张恒. 轮胎与湿滑道面相互作用下的飞机滑水行为研究[D]. 天津: 中国民航大学, 2018: 62-66.

    ZHANG H. Study on aircraft water skiing behavior under the interaction between tire and wet road surface[D]. Tianjin: Civil Aviation University of China, 2018: 62-66(in Chinese).
    [5] 朱兴一, 庞亚凤, 杨健, 等. 湿滑条件下基于真实纹理道面的机轮着陆滑水行为解析[J]. 中国公路学报, 2020, 33(10): 159-170. doi: 10.3969/j.issn.1001-7372.2020.10.010

    ZHU X Y, PANG Y F, YANG J, et al. Analysis on the hydroplaning of aircraft tire under real texture pavement conditions[J]. China Journal of Highway and Transport, 2020, 33(10): 159-170(in Chinese). doi: 10.3969/j.issn.1001-7372.2020.10.010
    [6] 刘芳兵. 湿滑跑道飞机侧风着陆滑行安全研究[D]. 天津: 中国民航大学, 2020: 45-47.

    LIU F B. Study on the safety of aircraft landing and taxiing in crosswind on wet runway[D]. Tianjin: Civil Aviation University of China, 2020: 45-47(in Chinese).
    [7] TREMBLAY L, METIVET M, MEUNIER F, et al. Method and system for aircraft sideslip guidance: US11054437[P]. 2021-07-06.
    [8] 李岳, 宗辉杭, 蔡靖, 等. 飞机轮组滑水行为与道面积水附加阻力[J]. 北京航空航天大学学报, 2023, 49(5): 1099-1107.

    LI Y, ZONG H H, CAI J, et al. Hydroplaning behavior of aircraft wheel group and additional resistance due to accumulated water on pavement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1099-1107(in Chinese).
    [9] 李岳, 胡宇祺, 蔡靖, 等. 湿滑道面飞机着陆滑水风险量化分析[J]. 南京航空航天大学学报, 2022, 54(6): 1138-1144.

    LI Y, HU Y Q, CAI J, et al. Quantification analysis of hydroplaning risks of aircraft landing on wet pavement[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(6): 1138-1144(in Chinese).
    [10] FWA T F, PASINDU H R, ONG G P. Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration[J]. Journal of Transportation Engineering, 2012, 138(4): 423-429. doi: 10.1061/(ASCE)TE.1943-5436.0000336
    [11] 张兆宁, 石峰. 基于组合赋权云模型的塔台管制系统运行安全评估[J]. 安全与环境学报, 2024, 24(4): 1254-1265.

    ZHANG Z N, SHI F. Operational safety assessment of tower control system based on combined weighted cloud model[J]. Journal of Safety and Environment, 2024, 24(4): 1254-1265(in Chinese).
    [12] 史佳辉, 徐吉辉, 陈玉金, 等. 基于交互作用矩阵多维云模型的飞机重着陆风险评估方法研究[J]. 系统工程与电子技术, 2021, 43(10): 3026-3032. doi: 10.12305/j.issn.1001-506X.2021.10.39

    SHI J H, XU J H, CHEN Y J, et al. Research on risk assessment method of aircraft heavy landing based on interaction matrix-multidimensional cloud model[J]. Systems Engineering and Electronics, 2021, 43(10): 3026-3032(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.10.39
    [13] 唐家文, 董兵, 王超峰. 基于云模型的空管安全运行保障能力评价[J]. 航空工程进展, 2021, 12(4): 59-67.

    TANG J W, DONG B, WANG C F. Evaluation on safe operation support ability of air traffic management based on cloud model[J]. Advances in Aeronautical Science and Engineering, 2021, 12(4): 59-67(in Chinese).
    [14] 李岳, 胡宇祺, 蔡靖, 等. 基于变权重-正态云模型的飞机轮胎滑水风险研究[J]. 北京航空航天大学学报, 2023, 49(9): 2299-2305.

    LI Y, HU Y Q, CAI J, et al. Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2299-2305(in Chinese).
    [15] 周义蛟, 郭基联, 周舟. 基于云模型与组合赋权法的飞机保障性评估研究[C]//2017年首届航空保障设备发展论坛. 北京: 中国航空航天工具协会, 中国航空学会航空维修工程专业分会, 2017: 142-148.

    ZHOU Y J, GUO J L, ZHOU Z. A study on military aircraft supportability assessment based on cloud model and game theory[C]//Proceedings of the 2017 1st Aviation Support Equipment Development Forum. Beijing: China Aerospace Tools Association, Aviation Maintenance Engineering Branch of the Chinese Aerospace Society, 2017: 142-148(in Chinese).
    [16] 叶琼, 李绍稳, 张友华, 等. 云模型及应用综述[J]. 计算机工程与设计, 2011, 32(12): 4198-4201.

    YE Q, LI S W, ZHANG Y H, et al. Cloud model and application overview[J]. Computer Engineering and Design, 2011, 32(12): 4198-4201(in Chinese).
    [17] 李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8): 28-34. doi: 10.3969/j.issn.1009-1742.2004.08.006

    LI D Y, LIU C Y. Study on the universality of the normal cloud model[J]. Engineering Science, 2004, 6(8): 28-34(in Chinese). doi: 10.3969/j.issn.1009-1742.2004.08.006
    [18] 刘俊杰, 张瑞瑞, 叶英豪, 等. 基于云模型的航空器地面滑行错误事件风险分析[J]. 中国民航飞行学院学报, 2022, 33(5): 51-56. doi: 10.3969/j.issn.1009-4288.2022.05.011

    LIU J J, ZHANG R R, YE Y H, et al. Risk analysis of aircraft ground taxiing error event based on cloud model[J]. Journal of Civil Aviation Flight University of China, 2022, 33(5): 51-56(in Chinese). doi: 10.3969/j.issn.1009-4288.2022.05.011
    [19] 汪明武, 王霄, 龙静云, 等. 基于多维联系正态云模型的泥石流危险性评价[J]. 应用基础与工程科学学报, 2021, 29(2): 368-375.

    WANG M W, WANG X, LONG J Y, et al. Risk assessment of debris flow based on multidimensional connection normal cloud model[J]. Journal of Basic Science and Engineering, 2021, 29(2): 368-375(in Chinese).
    [20] 汪明武, 朱其坤, 赵奎元, 等. 基于有限区间联系云的围岩稳定性评价模型[J]. 岩土力学, 2016, 37(增刊1): 140-144.

    WANG M W, ZHU Q K, ZHAO K Y, et al. Stability evaluation model of surrounding rock based on limited interval connection cloud[J]. Rock and Soil Mechanics, 2016, 37(Sup 1): 140-144(in Chinese).
    [21] 马丽叶, 张涛, 卢志刚, 等. 基于变权可拓云模型的区域综合能源系统综合评价[J]. 电工技术学报, 2022, 37(11): 2789-2799.

    MA L Y, ZHANG T, LU Z G, et al. Comprehensive evaluation of regional integrated energy system based on variable weight extension cloud model[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2789-2799(in Chinese).
    [22] 蔡文, 杨春燕, 何斌. 可拓学基础理论研究的新进展[J]. 中国工程科学, 2003, 5(2): 80-87. doi: 10.3969/j.issn.1009-1742.2003.02.013

    CAI W, YANG C Y, HE B. New development of the basic theory of extenics[J]. Engineering Science, 2003, 5(2): 80-87(in Chinese). doi: 10.3969/j.issn.1009-1742.2003.02.013
    [23] 关晓吉. 基于可拓联系云模型的隧道塌方风险等级评价方法[J]. 中国安全生产科学技术, 2018, 14(11): 186-192. doi: 10.11731/j.issn.1673-193x.2018.11.030

    GUAN X J. Evaluation method on risk grade of tunnel collapse based on extension connection cloud model[J]. Journal of Safety Science and Technology, 2018, 14(11): 186-192(in Chinese). doi: 10.11731/j.issn.1673-193x.2018.11.030
    [24] 牛亚东, 张思祥, 田广军, 等. 机场跑道摩擦系数影响因素研究[J]. 应用力学学报, 2021, 38(2): 715-720. doi: 10.11776/cjam.38.02.D158

    NIU Y D, ZHANG S X, TIAN G J, et al. Research on influencing factors of friction coefficient in airport runway[J]. Chinese Journal of Applied Mechanics, 2021, 38(2): 715-720(in Chinese). doi: 10.11776/cjam.38.02.D158
    [25] 王迎超, 靖洪文, 张强, 等. 基于正态云模型的深埋地下工程岩爆烈度分级预测研究[J]. 岩土力学, 2015, 36(4): 1189-1194.

    WANG Y C, JING H W, ZHANG Q, et al. A normal cloud model-based study of grading prediction of rockburst intensity in deep underground engineering[J]. Rock and Soil Mechanics, 2015, 36(4): 1189-1194(in Chinese).
    [26] 宗一鸣. 湿滑道面条件下轮胎力学行为与飞机着陆安全问题研究[D]. 天津: 中国民航大学, 2017: 19-30.

    ZONG Y M. Research on tire mechanical behavior and aircraft landing safety under wet road surface conditions[D]. Tianjin: Civil Aviation University of China, 2017: 19-30(in Chinese).
    [27] OH C W, KIM T W, JEONG H Y, et al. Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method[J]. Journal of Mechanical Science and Technology, 2008, 22(1): 34-40. doi: 10.1007/s12206-007-1004-y
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  119
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 录用日期:  2023-05-29
  • 网络出版日期:  2023-06-15
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答