Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速进气道出口封闭的非定常流动特性研究

温玉芬 张炜群 郝思思

温玉芬,张炜群,郝思思. 超声速进气道出口封闭的非定常流动特性研究[J]. 北京航空航天大学学报,2025,51(3):772-783 doi: 10.13700/j.bh.1001-5965.2023.0142
引用本文: 温玉芬,张炜群,郝思思. 超声速进气道出口封闭的非定常流动特性研究[J]. 北京航空航天大学学报,2025,51(3):772-783 doi: 10.13700/j.bh.1001-5965.2023.0142
WEN Y F,ZHANG W Q,HAO S S. Investigation on unsteady flow characteristics of a supersonic inlet with exit blocked[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):772-783 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0142
Citation: WEN Y F,ZHANG W Q,HAO S S. Investigation on unsteady flow characteristics of a supersonic inlet with exit blocked[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):772-783 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0142

超声速进气道出口封闭的非定常流动特性研究

doi: 10.13700/j.bh.1001-5965.2023.0142
详细信息
    通讯作者:

    E-mail:wyf369963@163.com

  • 中图分类号: V221.3

Investigation on unsteady flow characteristics of a supersonic inlet with exit blocked

More Information
  • 摘要:

    冲压发动机转级过程中可能会出现进气道入口通流、出口封闭的盲腔流动现象,使得进气道发生大幅气流振荡,飞行器面临姿态失稳和结构破坏的风险。针对进气道的气流振荡问题,对一种超声速双侧布局进气道在出口封闭状态下的非定常流动特性开展风洞试验和数值仿真研究,获得了模型尺寸、来流马赫数及边界层吸除对进气道压强振荡特性的影响。结果表明:出口封闭时,进气道发生周期性的流动振荡现象,气流振荡频率与来流声速成正比,与进气道长度成反比,压强振荡峰值与来流总压接近,且随着来流马赫数的增大显著上升。采用的数值仿真方法较好地模拟了进气道出口封闭状态下的非定常流动,数值仿真结果与风洞试验结果吻合良好。非定常仿真结果进一步表明:在气流振荡过程中,进气道内收缩段的边界层吸除槽可以起到泄压作用,使得进气道头部斜激波系在回退过程中达到封口状态,捕获的流量系数较无边界层吸除槽时明显增大,从而导致了进气道压强振荡峰值上升49.47%,频率下降21.78%。

     

  • 图 1  双侧进气道布局的飞行器示意图(俯视图)

    Figure 1.  Schematic diagram of configuration of flying vehicle with twin-duct inlets (top view)

    图 2  进气道模型示意图

    Figure 2.  Schematic diagram of inlet model

    图 3  进气道动态压力测点位置示意图

    Figure 3.  Schematic diagram of measuring point positions for dynamic pressure of inlet

    图 4  风洞试验获得的左侧进气道沿程不同位置的压强时间历程曲线(Ma=3.0)

    Figure 4.  Time histories curves of pressure at different positions of left inlet in wind tunnel test (Ma = 3.0)

    图 5  风洞试验获得的左侧进气道动态压力频谱特性(Ma=3.0)

    Figure 5.  Spectral characteristics of dynamic pressure of left inlet in wind tunnel test (Ma = 3.0)

    图 6  风洞试验获得的左、右侧进气道扩张段出口位置的压强时间历程曲线(Ma=3.0)

    Figure 6.  Time histories curves of pressure at exit of diffuser between left and right inlets in wind tunnel test (Ma = 3.0)

    图 7  风洞试验获得的左、右侧进气道扩张段出口位置的动态压力频谱特性(Ma=3.0)

    Figure 7.  Spectral characteristics of dynamic pressure at exit of diffuser between left and right inlets in wind tunnel test (Ma = 3.0)

    图 8  进气道流动参数变化示意图

    Figure 8.  Schematic diagram of variation of inlet’s flow parameters

    图 9  方案1进气道二维计算网格

    Figure 9.  Grid of inlet in two-dimensional computation for option 1

    图 10  方案1进气道三维计算网格

    Figure 10.  Grid of inlet in three-dimensional computation for option 1

    图 11  方案1进气道扩张段出口压强试验值与仿真值对比

    Figure 11.  Comparison of experimental and simulated pressure at exit of inlet’s diffuser for option 1

    图 12  方案1进气道不同位置的压强时间历程曲线

    Figure 12.  Time histories of pressure at different positions of inlet for option 1

    图 13  方案1进气道结尾激波串位置的时间历程曲线

    Figure 13.  Time history of terminal shock train position of inlet for option 1

    图 14  不同时间段内方案1进气道4个监测点的压强振荡峰值对比

    Figure 14.  Comparison of oscillating pressure peaks at four monitoring points of inlet during different time ranges for option 1

    图 15  方案1进气道捕获流量系数的时间历程曲线

    Figure 15.  Time history of captured flow coefficient of inlet for option 1

    图 16  方案1进气道入口截面的平均马赫数时间历程

    Figure 16.  Time history of average Mach number of inlet entrance for option 1

    图 17  一个周期内典型时刻方案1进气道的静压等值图谱和平均流线分布

    Figure 17.  Static pressure contour plots and average streamline distribution of inlet for option 1 at typical moments in one cycle

    图 18  不同马赫数下,方案1进气道p4监测点的压强时间历程曲线

    Figure 18.  Time histories curves of pressure at monitoring point p4 for option 1 of different Mach numbers

    图 19  不同方案进气道p4监测点的压强时间历程曲线

    Figure 19.  Time histories of pressure at monitoring point p4 of inlet for different models

    图 20  一个周期内典型时刻方案2进气道的静压等值图谱和平均流线分布

    Figure 20.  Static pressure contour plots and average streamline distribution of inlet for option 2 at typical moments in one cycle

    图 21  不同方案进气道的进口和喉道截面流量系数对比

    Figure 21.  Comparison of flow coefficient on entrance and throat section of inlet for different options

    表  1  风洞试验参数

    Table  1.   Parameters of wind tunnel test

    Ma α/(°) β/(°) P0/Pa T0/K
    3.0 0 0 390000 300
    下载: 导出CSV

    表  2  数值计算工况及模拟参数

    Table  2.   Numerical calculation conditions and simulated parameters

    工况 方案 h/km Ma p0/Pa T/K ξ 维度
    1 1 3.0 10617.2 107.14 1∶2.5 三维
    2 1 3.0 10617.2 107.14 1∶2.5 二维
    3 1 15 3.0 12111.8 216.65 1∶1 二维
    4 1 12 2.8 19399.4 216.65 1∶1 二维
    5 1 12 2.6 19399.4 216.65 1∶1 二维
    6 2 15 3.0 12111.8 216.65 1∶1 二维
    下载: 导出CSV

    表  3  方案1进气道扩张段出口的压强振荡幅值和频率试验值与仿真值对比

    Table  3.   Comparison of experimental and simulated inlet’s oscillating pressure amplitudes and frequencies at exit of diffuser for option 1

    参数来源 f/Hz pmax/p0 Δf/% Δ(pmax/p0)/%
    试验 122.00 36.06
    二维仿真 120.47 35.40 −1.25 −1.83
    三维仿真 121.99 34.87 −0.008 −3.30
    下载: 导出CSV

    表  4  方案1进气道进口前方的气流参数与来流参数对比(h=15 km)

    Table  4.   Comparison of flow parameters and incoming flow parameters ahead of inlet entrance for option 1 (h = 15 km)

    位置MaP0/PaT/K
    自由来流3.0444899.38216.65
    进气道进口前方2.992434888.47217.40
    下载: 导出CSV

    表  5  不同尺寸模型进气道扩张段出口位置的压强振荡峰值和频率对比

    Table  5.   Comparison of inlet’s oscillating pressure peaks and frequencies at exit of diffuser for models of different sizes

    尺寸模型 f/Hz pmax/p0
    1∶1(工况3) 69.00 35.41
    1∶2.5(工况2) 120.47 35.40
    下载: 导出CSV

    表  6  不同马赫数下进气道p4监测点的压强振荡频率仿真值与理论值对比

    Table  6.   Comparison of simulated and theoretical frequencies of inlet’s oscillating pressure at monitoring point p4 for different Mach numbers

    Ma Ma3 ¯Ma c/(m·s−1) 理论f/Hz 仿真f/Hz f相对
    误差/%
    2.6 0.608 0.304 295.07 71.03 69.08 2.75
    2.8 0.580 0.290 295.07 71.69 68.44 4.53
    3.0 0.556 0.278 295.07 72.22 69.00 4.07
    下载: 导出CSV

    表  7  不同方案进气道p4监测点的压强振荡峰值和频率对比

    Table  7.   Comparison of inlet’s oscillating pressure peaks and frequencies at monitoring point p4 of inlet for different options

    方案 f/Hz pmax/p0
    方案1 69.00 35.41
    方案2 88.21 23.69
    下载: 导出CSV
  • [1] NISHIZAWA U, KAMEDA M, WATANABE Y, et al. Computational simulation of shock oscillation around a supersonic air-intake[C]//Proceedings of the 36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006.
    [2] NAKAYAMA T, SATO T, AKATSUKA M, et al. Investigation on shock oscillation phenomenon in a supersonic air inlet[C]//Proceedings of the 41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011.
    [3] LU P J, JAIN L T. Numerical investigation of inlet buzz flow[J]. Journal of Propulsion and Power, 1998, 14(1): 90-100. doi: 10.2514/2.5254
    [4] FUJIWARA H, MURAKAMI A, WATANABE Y. Numerical analysis on shock oscillation of two-dimensional external compression intakes[C]//Proceedings of the 32nd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2002.
    [5] 王玉峰, 杨宝娥. 超声速进气道喘振的机理研究[J]. 火箭推进, 2008, 34(1): 17-22. doi: 10.3969/j.issn.1672-9374.2008.01.004

    WANG Y F, YANG B E. Study of the buzz mechanism of supersonic inlets[J]. Journal of Rocket Propulsion, 2008, 34(1): 17-22(in Chinese). doi: 10.3969/j.issn.1672-9374.2008.01.004
    [6] OH J Y, MA F H, HSIEH S Y, et al. Interactions between shock and acoustic waves in a supersonic inlet diffuser[J]. Journal of Propulsion and Power, 2005, 21(3): 486-495. doi: 10.2514/1.9671
    [7] 刘占生, 张云峰, 田新. 冲压发动机超声速进气道流动自激振荡研究[J]. 航空动力学报, 2008, 23(9): 1595-1602.

    LIU Z S, ZHANG Y F, TIAN X. Research on self-excited oscillation flows in inlet of ramjet[J]. Journal of Aerospace Power, 2008, 23(9): 1595-1602(in Chinese).
    [8] SAUNDERS J, KEITH T. Results from computational analysis of a mixed compression supersonic inlet[C]//Proceedings of the 27th Joint Propulsion Conference. Reston: AIAA, 1991.
    [9] SAJBEN M, BOGAR T J, KROUTIL J C. Experimental study of flows in a two-dimensional inlet model[J]. Journal of Propulsion and Power, 1985, 1(2): 109-117. doi: 10.2514/3.22767
    [10] 李强, 刘佩进, 李江, 等. 冲压发动机助推段压强振荡现象数值分析[J]. 推进技术, 2008, 29(6): 673-676. doi: 10.3321/j.issn:1001-4055.2008.06.007

    LI Q, LIU P J, LI J, et al. Numerical simulation of boosting stage pressure oscillation in ramjet[J]. Journal of Propulsion Technology, 2008, 29(6): 673-676(in Chinese). doi: 10.3321/j.issn:1001-4055.2008.06.007
    [11] 孙振华, 吴催生. 冲压发动机加速阶段进气道内动态特性[J]. 固体火箭技术, 2011, 34(3): 285-289. doi: 10.3969/j.issn.1006-2793.2011.03.005

    SUN Z H, WU C S. Dynamic characteristics in ramjet inlet during acceleration phase[J]. Journal of Solid Rocket Technology, 2011, 34(3): 285-289(in Chinese). doi: 10.3969/j.issn.1006-2793.2011.03.005
    [12] 白晓征, 刘君, 郭正, 等. 冲压发动机进气道压力振荡过程的数值研究[J]. 推进技术, 2008, 29(5): 562-565. doi: 10.3321/j.issn:1001-4055.2008.05.010

    BAI X Z, LIU J, GUO Z, et al. Numerical simulation of pressure oscillation in ramjet inlet[J]. Journal of Propulsion Technology, 2008, 29(5): 562-565(in Chinese). doi: 10.3321/j.issn:1001-4055.2008.05.010
    [13] 刘志伟, 马高建, 崔金平. 附面层吸除对二元混压式进气道起动影响分析[J]. 弹箭与制导学报, 2009, 29(3): 149-152. doi: 10.3969/j.issn.1673-9728.2009.03.044

    LIU Z W, MA G J, CUI J P. Influence of boundary layers bleed sew to start[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(3): 149-152(in Chinese). doi: 10.3969/j.issn.1673-9728.2009.03.044
    [14] 贺永杰, 马高建, 刘志伟. 通过附面层泄除提高定几何混压式进气道性能的方法研究[J]. 航空兵器, 2010(2): 28-31. doi: 10.3969/j.issn.1673-5048.2010.02.007

    HE Y J, MA G J, LIU Z W. Study on improving the performance of mixed-compression inlet with fixed-geometry through boundary-layer bleed[J]. Aero Weaponry, 2010(2): 28-31(in Chinese). doi: 10.3969/j.issn.1673-5048.2010.02.007
    [15] HARLOFF G J, SMITH G E. Supersonic-inlet boundary-layer bleed flow[J]. AIAA Journal, 1996, 34(4): 778-785. doi: 10.2514/3.13140
    [16] SYBERG J, KONCSEK J L. Experimental evaluation of an analytically derived bleed system for a supersonic inlet[J]. Journal of Aircraft, 1976, 13(10): 792-797. doi: 10.2514/3.58712
    [17] FUJIMOTO A, NIWA N, SAWADA K. Numerical investigation of supersonic inlet with realistic bleed andbypass systems[J]. Journal of Propulsion and Power, 1992, 8(4): 857-861. doi: 10.2514/3.23560
    [18] HERRMANN D, BLEM S, GULHAN A. Experimental study of boundary-layer bleed impact on ramjet inlet performance[J]. Journal of Propulsion and Power, 2011, 27(6): 1186-1195. doi: 10.2514/1.B34223
    [19] 翁小侪, 郭荣伟. 一种二元定几何混压式超声速进气道流场控制概念研究[J]. 航空动力学报, 2012, 27(11): 2492-2498.

    WENG X C, GUO R W. Study of novel flow control concept for fix-geometry two-dimensional mix-compression supersonic inlet[J]. Journal of Aerospace Power, 2012, 27(11): 2492-2498(in Chinese).
    [20] WAN D W, GUO R W. Experimental investigation of a fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high- light and bleed slot in an inverted “X”-type layout[J]. Chinese Journal of Aeronautics, 2007, 20(4): 304-312. doi: 10.1016/S1000-9361(07)60048-X
    [21] 麻肖妃, 谢旅荣, 郭荣伟. 双下侧布局带泄流腔二元进气道试验[J]. 航空动力学报, 2010, 25(8): 1818-1824.

    MA X F, XIE L R, GUO R W. Investigation of two-dimensional supersonic twin inlet with slot-coupled cavity in 90° configuration at venter[J]. Journal of Aerospace Power, 2010, 25(8): 1818-1824(in Chinese).
    [22] SCHÜLEIN E. Skin friction and heat flux measurements in shock/boundary layer interaction flows[J]. AIAA Journal, 2006, 44(8): 1732-1741. doi: 10.2514/1.15110
  • 加载中
图(21) / 表(7)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  88
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-24
  • 录用日期:  2023-07-26
  • 网络出版日期:  2023-08-07
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答