-
摘要:
在高速行车条件下,越区切换作为未来高速铁路5G-R通信的关键技术,对于保障行车安全至关重要。下一代高速铁路5G-R无线通信系统越区切换算法采用固定切换参数,但当列车高速运行时,极易受到多普勒效应影响,导致切换成功率低,基于此,提出了一种考虑多普勒频移影响的改进5G-R自适应高速铁路越区切换算法。分析多普勒频移对切换成功率的影响,得到多普勒频移与切换成功率的关系函数;提出考虑多普勒频移影响的越区切换动态函数,设计余弦、余切、余割3种函数对切换迟滞门限及触发时延自适应调整;在不同多普勒频移及不同高铁场景下进行切换成功率的量化比较分析。研究结果表明:所提算法可有效调高切换成功率,在高架桥和山区场景下,余弦、余切、余割3种函数的切换成功率均优于对比算法,且满足中国无线通信系统切换成功率服务质量(QoS)大于99.5%的要求。研究结果为下一代高速铁路5G-R无线通信系统演进提供了理论参考依据。
Abstract:Under high-speed driving conditions, over-area handover, as a key technology for future 5G-R communication of high-speed railways, is crucial for ensuring driving safety. The next-generation 5G-R wireless communication system of high-speed railways adopts fixed handover parameters, but when the train is running at high speed, it is highly susceptible to the Doppler effect, resulting in low handover success. To address this issue, an improved 5G-R adaptive high-speed railway handover algorithm that took into account the influence of the Doppler shift was proposed. First, the influence of the Doppler shift on the handover success rate was analyzed, and the relationship function between Doppler shift and handover success rate was obtained. Then, the dynamic function of handover over the area considering the influence of Doppler shift was proposed, and three functions, namely cosine, cotangent, and cosecant, were designed to adjust the handover hysteresis threshold and time-to-trigger adaptively. Finally, a quantitative comparison analysis of the handover success rate was carried out for different Doppler shift sizes and different high-speed railway scenarios. The results show that the proposed method can effectively improve the handover success rate over the area, and the handover success rate of the cosine, cosecant, and cosecant functions in the viaduct and mountain areas is better than the comparison algorithm and meets the requirement of quality of service (QoS) higher than 99.5% for the handover success rate of China’s wireless communication system. The research results provide a certain theoretical reference for the evolution of the 5G-R system for next-generation high-speed railways.
-
Key words:
- handover algorithm /
- 5G-R /
- Doppler shift /
- dynamic function /
- adaptive handover
-
表 1 迟滞门限参数设置
Table 1. Hysteresis threshold parameter setting
函数名称 函数表达式 函数参数 j k z 余弦函数 Hs=jcos(fdk+π8)+z 4/cos(π/8) cos(π/8)/400 1 余切函数 Hs=jcot(fdk+π8)+z 4/cot(π/8) cot(π/8)/400 1 余割函数 Hs=j(csc(fdk+π8)−1)+z 4/(csc(π/8)−1) csc(π/8)/400 1 表 2 触发时延参数设置
Table 2. Time-to-trigger parameter setting
函数名称 函数表达式 函数参数 j k z 余弦函数 Ts=jcos(fdk+π8)+z 380/cos(π/8) cos(π/8)/400 100 余切函数 Ts=jcot(fdk+π8)+z 380/cot(π/8) cot(π/8)/400 100 余割函数 Ts=j(csc(fdk+π8)−1)+z 380/(csc(π/8)−1) csc(π/8)/400 100 参数 数值 载波频率fc/MHz 2600 基站发射功率Pt/dBm 86 相邻基站间的距离dab/m 3000 基站天线高度hb/m 30 列车天线高度hm/m 3.5 阴影衰落标准差σ/dB 8 切换执行时间texe/ms 100 信号强度阈值T/dBm −58 表 4 不同场景下切换成功率的比较
Table 4. Comparison of handover success rates in different scenarios
表 5 多普勒频移估计误差切换成功率比较
Table 5. Comparison of handover success rates of Doppler shift estimation errors
多普勒频移/Hz 未加入误差前切换成功率/% 加入误差扰动后切换成功率/% 本文余切函数 本文余割函数 本文余弦函数 本文余切函数 本文余割函数 本文余弦函数 200 99.6475 99.6698 99.5652 99.6456 99.6601 99.5649 400 99.6827 99.7063 99.6054 99.6819 99.7044 99.6046 600 99.6925 99.7088 99.6326 99.6917 99.7084 99.6317 800 99.6907 99.7008 99.6474 99.6902 99.7005 99.6447 1000 99.6840 99.6889 99.6481 99.6833 99.6807 99.6464 -
[1] 陈永, 詹芝贤, 张薇. 基于MPC的车车通信时间同步方法[J]. 中国铁道科学, 2022, 43(5): 111-122.CHEN Y, ZHAN Z X, ZHANG W. Time synchronization method for train-to-train communication based on model predictive control[J]. China Railway Science, 2022, 43(5): 111-122(in Chinese). [2] WANG Z G, WANG Z H, ZHU F S, et al. Joint Doppler shift and channel estimation for high-speed railway wireless communications in tunnel scenarios[J]. Wireless Communications and Mobile Computing, 2022, 2022: 6804412. [3] QIAN P H, SHANG T, GAO Y, et al. Research on dynamic handover decision algorithm based on fuzzy logic control in mobile FSO networks[J]. Photonic Network Communications, 2021, 41(2): 136-147. doi: 10.1007/s11107-020-00920-w [4] DAVAASAMBUU B, YU K P, SATO T. Self-optimization of handover parameters for long-term evolution with dual wireless mobile relay nodes[J]. Future Internet, 2015, 7(2): 196-213. doi: 10.3390/fi7020196 [5] DUAN B F, LI C R, XIE J L, et al. Fast handover algorithm based on location and weight in 5G-R wireless communications for high-speed railways[J]. Sensors, 2021, 21(9): 3100. doi: 10.3390/s21093100 [6] ANGRI I, NAJID A, MAHFOUDI M. Available bandwidth and RSRP based handover algorithm for LTE/LTE-Advanced networks tested in LTE-Sim simulator[J]. International Journal of Electronics and Telecommunications, 2019, 65(1): 85-93. [7] CHEN Y, NIU K Y, WANG Z. Adaptive handover algorithm for LTE-R system in high-speed railway scenario[J]. IEEE Access, 2021, 9: 59540-59547. doi: 10.1109/ACCESS.2021.3073917 [8] 陈永刚, 李德威, 张彩珍. 一种基于速度的LTE-R越区切换优化算法[J]. 铁道学报, 2017, 39(7): 67-72. doi: 10.3969/j.issn.1001-8360.2017.07.010CHEN Y G, LI D W, ZHANG C Z. A speed-based cross-zone handoff optimization algorithm of LTE-R[J]. Journal of the China Railway Society, 2017, 39(7): 67-72(in Chinese). doi: 10.3969/j.issn.1001-8360.2017.07.010 [9] 3GPP.Technical specification group services and system aspects;system architecture for the 5G system (5GS);stage2 (Release17): TS23.501[S].Valbonne: 3GPP Organizational Partners, 2021. [10] EL BANNA R, ELATTAR H M, ABOU EL-DAHAB M M. Fast adaptive handover using fuzzy logic for 5G communications on high speed trains[C]//Proceedings of the 16th International Conference on Telecommunications. Piscataway: IEEE Press, 2021: 10-17. [11] CHEN Z, DAN L. Fast fading channel estimation for OFDM systems with complexity reduction[J]. Chinese Journal of Electronics, 2021, 30(6): 1173-1177. doi: 10.1049/cje.2021.07.023 [12] YANG Y C, BAI Z Q, PANG K, et al. Design and analysis of spatial modulation based orthogonal time frequency space system[J]. China Communications, 2021, 18(8): 209-223. doi: 10.23919/JCC.2021.08.015 [13] ZHAO J H, LIU Y Y, WANG C Y, et al. High-speed based adaptive beamforming handover scheme in LTE-R[J]. IET Communications, 2018, 12(10): 1215-1222. doi: 10.1049/iet-com.2017.0583 [14] 李岸宁. 铁路5G专网无线通信信道特征分析与建模[D]. 北京: 中国铁道科学研究院, 2022.LI A N. Characteristic analysis and modeling of wireless communication channels in railway 5G dedicated network[D]. Beijing: China Academy of Railway Sciences, 2022(in Chinese). [15] LIU Q Y, KWONG C F, WEI S, et al. Reinforcement learning-based joint self-optimisation method for the fuzzy logic handover algorithm in 5G HetNets[J]. Neural Computing and Applications, 2023, 35(10): 7297-7313. doi: 10.1007/s00521-021-06673-5 [16] 3GPP. Radio resource control(RRC): TS 36.331 v16.6. 0[S]. Sophia Antipolis Cedex: ETSI, 20211. [17] ALHAMMADI A, HASSAN W H, EL-SALEH A A, et al. Intelligent coordinated self-optimizing handover scheme for 4G/5G heterogeneous networks[J]. ICT Express, 2023, 9(2): 276-281. doi: 10.1016/j.icte.2022.04.013 [18] 田蜜. 地空宽带通信越区切换算法研究[D]. 重庆: 重庆大学, 2019.TIAN M. Research on handoff algorithm of ground-to-air broadband communication[D]. Chongqing: Chongqing University, 2019(in Chinese). [19] 韩丽. 复杂场景与超高速铁路移动通信系统的快速切换算法研究[D]. 北京: 北京交通大学, 2021.HAN L. Research on fast handover algorithm for composite scene and ultra-high speed railway mobile communication system[D]. Beijing: Beijing Jiaotong University, 2021(in Chinese). [20] WANG Z F, WEN X M, LU Z M, et al. Random access optimization for initial access and seamless handover for 5G-satellite network[J]. Computer Networks, 2022, 214: 109176. doi: 10.1016/j.comnet.2022.109176 [21] ZAKIA I, KURNIAWAN A, ISKANDAR. Impact of Doppler shift error on least-squares MIMO channel estimation for high-speed railway[J]. IET Communications, 2020, 14(2): 206-218. doi: 10.1049/iet-com.2018.6259 -