Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前倾转变体无人机固定时间轨迹跟踪控制

窦磊 李新凯 张宏立 王昊 杨加秀

窦磊,李新凯,张宏立,等. 前倾转变体无人机固定时间轨迹跟踪控制[J]. 北京航空航天大学学报,2025,51(3):1005-1017 doi: 10.13700/j.bh.1001-5965.2023.0152
引用本文: 窦磊,李新凯,张宏立,等. 前倾转变体无人机固定时间轨迹跟踪控制[J]. 北京航空航天大学学报,2025,51(3):1005-1017 doi: 10.13700/j.bh.1001-5965.2023.0152
DOU L,LI X K,ZHANG H L,et al. Fixed time trajectory tracking control of forward-tilting morphing aerospace vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1005-1017 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0152
Citation: DOU L,LI X K,ZHANG H L,et al. Fixed time trajectory tracking control of forward-tilting morphing aerospace vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1005-1017 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0152

前倾转变体无人机固定时间轨迹跟踪控制

doi: 10.13700/j.bh.1001-5965.2023.0152
基金项目: 国家自然科学基金(62263030); 新疆维吾尔自治区自然科学基金青年项目(2022D01C86)
详细信息
    通讯作者:

    E-mail:lxk@xju.edu.cn

  • 中图分类号: V221+.3;TB553

Fixed time trajectory tracking control of forward-tilting morphing aerospace vehicle

Funds: National Natural Science Foundation of China (62263030); Youth Project of Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01C86)
More Information
  • 摘要:

    针对具有时变扰动的前倾转变体无人机轨迹跟踪控制问题,提出了一种基于浸入与不变(I&I)理论和固定时间收敛理论的非奇异终端滑模控制方案。融合动态尺度因子设计一种基于I&I的时变扰动观测器;构造一种分段式的固定时间非奇异终端滑模面,消除滑模面的奇异性,并使系统状态在固定时间内收敛到平衡点附近小邻域内,且收敛时间的上界与系统的初始状态无关;基于Lyapunov稳定性理论证明系统的全局固定时间稳定性,并给出其收敛时间的上界。在2种实验场景下验证了所提控制方案的有效性和优越性。与传统的控制方法相比,所提控制方案使系统的收敛速度更快,抗扰动能力更好。

     

  • 图 1  前倾转变体无人机受力分析及坐标系建立

    Figure 1.  Force analysis and coordinate system establishment of forward-tilting morphing aerospace vehicle

    图 2  前倾转变体无人机飞行模式切换

    Figure 2.  Flight mode switching of forward-tilting morphing aerospace vehicle

    图 3  本文方案的控制策略

    Figure 3.  Control strategy of the proposed scheme

    图 4  不同初始状态下的三维轨迹跟踪效果

    Figure 4.  Three-dimensional trajectory tracking effects in different initial states

    图 5  位置子系统的轨迹跟踪误差收敛情况

    Figure 5.  Trajectory tracking error convergence of position subsystem

    图 6  4种方法的三维轨迹跟踪效果

    Figure 6.  Three-dimensional trajectory tracking effects of four methods

    图 7  4种方法的位置轨迹跟踪误差

    Figure 7.  Position trajectory tracking errors of four methods

    图 8  4种方法解算出的期望姿态角

    Figure 8.  Desired attitude angles calculated by four methods

    图 9  4种方法的姿态轨迹跟踪误差

    Figure 9.  Attitude trajectory tracking errors of four methods

    图 10  多源时变扰动

    Figure 10.  Multi-source time-varying disturbances

    图 11  多源时变扰动下的轨迹跟踪误差

    Figure 11.  Trajectory tracking error under multi-source time-varying disturbances

    图 12  4种方法的虚拟控制输入信号响应

    Figure 12.  Virtual control input signal responses of four methods

    图 13  4种方法的实际控制输入信号响应

    Figure 13.  Actual control input signal responses of four methods

    图 14  2种方法对时变扰动的估计效果

    Figure 14.  Estimation effects of two methods on time-varying disturbances

    图 15  6个控制通道动态尺度因子ri的自适应过程

    Figure 15.  Adaptive process of dynamic scale factor ri of six control channels

    图 16  6个控制通道动态尺度误差zi的自适应过程

    Figure 16.  Adaptive process for dynamic scale error zi of six control channels

    图 17  4种方法的机翼与机身夹角θf自适应响应过程

    Figure 17.  Adaptive response process of angle between wing and fuselage of four methods

    图 18  机身速度v的变化过程

    Figure 18.  Variation of vehicle speed v

    表  1  3种初始状态的选取

    Table  1.   Selection of three initial states m

    状态 x(0) y(0) z(0) ϕ(0) θ(0) ψ(0)
    1 1.5 −0.5 −1.5 0 0 0
    2 −2.5 −0.5 −1.5 0 0 π/6
    3 2 −0.5 1 0 0 π/3
    下载: 导出CSV
  • [1] 刘重, 何玉庆, 谷丰, 等. 四倾转旋翼无人机无源控制与飞行实验[J]. 控制理论与应用, 2021, 38(8): 1287-1298.

    LIU Z, HE Y Q, GU F, et al. Passivity-based control and flight experiment of quad-tilt rotor unmanned aerial vehicle[J]. Control Theory & Applications, 2021, 38(8): 1287-1298(in Chinese).
    [2] 陈卓英, 陈怀民, 王永康. 飞翼布局矢量推力无人机容错控制研究[J]. 西北工业大学学报, 2022, 40(5): 990-996. doi: 10.3969/j.issn.1000-2758.2022.05.005

    CHEN Z Y, CHEN H M, WANG Y K. Study on tolerance control of flying-wing layout vectored thrust UAV[J]. Journal of Northwestern Polytechnical University, 2022, 40(5): 990-996(in Chinese). doi: 10.3969/j.issn.1000-2758.2022.05.005
    [3] ZHANG J M, LIU Y B, GAO L, et al. Bioinspired drone actuated using wing and aileron motion for extended flight capabilities[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 11197-11204. doi: 10.1109/LRA.2022.3192803
    [4] 李新凯, 张宏立, 范文慧. 非匹配扰动下变体无人机预设性能控制[J]. 航空学报, 2022, 43(2): 325008.

    LI X K, ZHANG H L, FAN W H. Prescribed performance control for morphing aerospace vehicle under mismatched disturbances[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 325008(in Chinese).
    [5] ASTOLFI A, ORTEGA R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2003, 48(4): 590-606. doi: 10.1109/TAC.2003.809820
    [6] ARBO M H, GRØTLI E I, GRAVDAHL J T. On the globally exponentially convergent immersion and invariance speed observer for mechanical systems[C]//Proceedings of the 2017 American Control Conference. Piscataway: IEEE Press, 2017: 3294-3299.
    [7] YU L, HE G, ZHAO S L, et al. Immersion and invariance-based sliding mode attitude control of tilt tri-rotor UAV in helicopter mode[J]. International Journal of Control, Automation and Systems, 2021, 19(2): 722-735. doi: 10.1007/s12555-020-0110-9
    [8] HOSSEINI-PISHROBAT M, KEIGHOBADI J, PIRASTEHZAD A, et al. Immersion and invariance-based extended state observer design for a class of nonlinear systems[J]. International Journal of Robust and Nonlinear Control, 2021, 31(13): 6233-6254. doi: 10.1002/rnc.5607
    [9] KARAGIANNIS D, SASSANO M, ASTOLFI A. Dynamic scaling and observer design with application to adaptive control[J]. Automatica, 2009, 45(12): 2883-2889. doi: 10.1016/j.automatica.2009.09.013
    [10] XIA D D, YUE X K, WEN H W. Output feedback tracking control for rigid body attitude via immersion and invariance angular velocity observers[J]. International Journal of Adaptive Control and Signal Processing, 2020, 34(12): 1812-1830. doi: 10.1002/acs.3178
    [11] XIA D D, YUE X K. Dynamic scaling-based adaptive control without scaling factor: with application to Euler-Lagrange systems[J]. International Journal of Robust and Nonlinear Control, 2021, 31(10): 4531-4552. doi: 10.1002/rnc.5492
    [12] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control, Signals and Systems, 2005, 17(2): 101-127. doi: 10.1007/s00498-005-0151-x
    [13] YU J P, SHI P, ZHAO L. Finite-time command filtered backstepping control for a class of nonlinear systems[J]. Automatica, 2018, 92: 173-180. doi: 10.1016/j.automatica.2018.03.033
    [14] HOU H Z, YU X H, XU L, et al. Finite-time continuous terminal sliding mode control of servo motor systems[J]. IEEE Transactions on Industrial Electronics, 2019, 67(7): 5647-5656.
    [15] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110.
    [16] ZUO Z Y. Non-singular fixed-time terminal sliding mode control of non-linear systems[J]. IET Control Theory & Applications, 2015, 9(4): 545-552.
    [17] HUANG Y, JIA Y M. Fixed-time consensus tracking control for second-order multi-agent systems with bounded input uncertainties via NFFTSM[J]. IET Control Theory & Applications, 2017, 11(16): 2900-2909.
    [18] TIAN Y, CAI Y L, DENG Y F. A fast nonsingular terminal sliding mode control method for nonlinear systems with fixed-time stability guarantees[J]. IEEE Access, 2020, 8: 60444-60454. doi: 10.1109/ACCESS.2020.2980044
    [19] LI H J, CAI Y L. Fixed-time non-singular terminal sliding mode control with globally fast convergence[J]. IET Control Theory & Applications, 2022, 16(12): 1227-1241.
    [20] WANG X, GUO J, TANG S J, et al. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle[J]. ISA Transactions, 2019, 88: 233-245. doi: 10.1016/j.isatra.2018.12.013
    [21] SONG S, PARK J H, ZHANG B Y, et al. Event-triggered adaptive practical fixed-time trajectory tracking control for unmanned surface vehicle[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 68(1): 436-440.
    [22] JIN X, DAI S L, LIANG J J. Fixed-time path-following control of an autonomous vehicle with path-dependent performance and feasibility constraints[J]. IEEE Transactions on Intelligent Vehicles, 2021, 8(1): 458-468.
    [23] ZOU A M, KUMAR K D, DE RUITER A H J. Fixed-time attitude tracking control for rigid spacecraft[J]. Automatica, 2020, 113: 108792. doi: 10.1016/j.automatica.2019.108792
    [24] 李新凯, 张宏立, 范文慧. 基于时变障碍李雅普诺夫函数的变体无人机有限时间控制[J]. 自动化学报, 2022, 48(8): 2062-2074.

    LI X K, ZHANG H L, FAN W H. Finite-time control for morphing aerospace vehicle based on time-varying barrier Lyapunov function[J]. Acta Automatica Sinica, 2022, 48(8): 2062-2074(in Chinese).
    [25] NI J K, LIU L, LIU C X, et al. Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 64(2): 151-155.
    [26] ZHANG Y, TANG S J, GUO J. Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence[J]. International Journal of Robust and Nonlinear Control, 2018, 28(8): 2996-3014. doi: 10.1002/rnc.4067
    [27] NEKOUKAR V, MAHDIAN DEHKORDI N. Robust path tracking of a quadrotor using adaptive fuzzy terminal sliding mode control[J]. Control Engineering Practice, 2021, 110: 104763. doi: 10.1016/j.conengprac.2021.104763
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  98
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-31
  • 录用日期:  2023-05-26
  • 网络出版日期:  2023-06-28
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答