留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双路径监督的遥感图像语义分割网络

刘春娟 乔泽 闫浩文 吴小所 王嘉伟 辛钰强

杨中洲, 李椿萱. 模拟可压缩流的高分辨率有限元法[J]. 北京航空航天大学学报, 2008, 34(02): 171-174.
引用本文: 刘春娟,乔泽,闫浩文,等. 基于双路径监督的遥感图像语义分割网络[J]. 北京航空航天大学学报,2025,51(3):732-741 doi: 10.13700/j.bh.1001-5965.2023.0155
Yang Zhongzhou, Lee Chun-Hian. High resolution finite element procedure for compressible flows simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(02): 171-174. (in Chinese)
Citation: LIU C J,QIAO Z,YAN H W,et al. Semantic segmentation network of remote sensing images based on dual path supervision[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):732-741 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0155

基于双路径监督的遥感图像语义分割网络

doi: 10.13700/j.bh.1001-5965.2023.0155
基金项目: 国家重点研发计划(2022YFB3903604);甘肃省自然科学基金(21JR7RA289);甘肃省重点研发计划(20YF8GA035)
详细信息
    通讯作者:

    E-mail:43452740@qq.com

  • 中图分类号: TP751.1;V19

Semantic segmentation network of remote sensing images based on dual path supervision

Funds: National Key Research and Development Program of China (2022YFB3903604); Natural Science Foundation of Gansu Province (21JR7RA289); Key Research and Development Projects of Gansu Province (20YF8GA035)
More Information
  • 摘要:

    为解决遥感图像语义分割任务中目标物体边界分类模糊的问题,提出双路径监督与注意力筛选网络。引入可监督的边界提取模块来增加边界信息通道,提高边界信息在语义分割中的权重,增强对目标物体边界像素的注意力;引入注意力筛选模块,通过注意力图筛选出浅层网络中的空间细节信息和深层网络中的抽象语义信息,舍弃网络中的冗余信息,防止过拟合。双路径监督与注意力筛选网络在Potsdam数据集和Jiage数据集上的平均交并比分别为85.44%和86.07%,比次优网络MagNet和SAPNet分别提升了1.24%和1.28%、1.54%和1.27%。实验结果表明,所提网络能更精准地分割目标物体的边界。

     

  • 图 1  双路径监督与注意力筛选网络整体结构

    Figure 1.  Overall structure of a dual path supervision and attention filtering network

    图 2  注意力筛选模块的结构

    Figure 2.  Structure of attention filtering module

    图 3  Potsdam数据集上消融实验局部视觉对比结果

    Figure 3.  Local visual comparison results of ablation experiments on Potsdam dataset

    图 4  Jiage数据集上消融实验局部视觉对比结果

    Figure 4.  Local visual comparison results of ablation experiments on Jiage dataset

    图 5  Potsdam数据集上与7种网络的定性比较

    Figure 5.  Qualitative comparison with seven networks on Potsdam dataset

    图 6  Jiage数据集上与7种网络的定性比较

    Figure 6.  Qualitative comparison with seven networks on Jiage dataset

    表  1  Potsdam数据集消融实验结果

    Table  1.   Results of ablation experiments on Potsdam dataset %

    网络模型 IoU F1 mIoU PA
    背景 汽车 地面 低植被 建筑物
    DCED 54.57 76.05 79.37 72.02 74.97 89.02 84.85 74.33 86.29
    DCED-BEM 80.70 79.07 85.60 78.41 80.39 89.89 91.02 82.34 91.21
    DCED-AFM 81.57 79.48 86.38 81.26 82.28 89.82 91.78 83.47 92.09
    DCED-BEM-AFM 84.93 79.51 87.37 84.33 85.07 91.41 92.89 85.44 93.36
    下载: 导出CSV

    表  2  Jiage数据集消融实验结果

    Table  2.   Results of ablation experiments on Jiage dataset %

    网络模型 IoU F1 mIoU PA
    背景 植被 道路 建筑物
    DCED 77.04 92.84 43.91 83.91 78.56 84.71 75.25 91.89
    DCED-BEM 82.39 95.34 64.33 89.32 82.85 90.24 82.85 94.18
    DCED-AFM 83.55 95.94 68.05 90.60 83.63 91.22 84.35 94.76
    DCED-BEM-AFM 83.84 96.25 73.51 92.21 84.52 92.32 86.07 95.15
    下载: 导出CSV

    表  3  Potsdam数据集上对比实验结果

    Table  3.   Comparison of experimental results on Potsdam dataset

    模型 IoU/% mIoU/% 参数量 预测时间/s
    背景 汽车 地面 低植被 建筑物
    SegNet[24] 69.49 59.85 83.44 52.97 79.26 80.36 70.90 15.62×106 0.12
    PSPNet[15] 78.33 65.84 86.78 56.21 81.55 88.32 76.17 30.95×106 0.34
    DeepLabv3[14] 78.86 67.57 85.63 60.38 80.57 87.51 76.75 59.24×106 0.41
    GCN[25] 75.12 73.15 85.36 67.32 82.85 85.27 78.18 25.91×106 0.15
    EMANet[26] 77.40 75.60 85.60 80.70 82.10 89.30 81.78 34.72×106 0.12
    CCNet[21] 76.39 78.79 87.60 79.62 82.24 89.71 82.39 60.11×106 0.23
    DMAU-Net[27] 80.69 76.54 86.76 80.87 82.15 92.55 83.26 36.42×106 0.19
    SAPNet[28] 82.30 73.59 87.27 85.38 84.65 91.75 84.16 63.83×106 0.37
    MagNet[29] 79.54 82.09 88.67 79.85 83.00 92.07 84.20 51.67×106 0.32
    DCED-BEM-AFM 84.93 79.51 87.37 84.33 85.07 91.41 85.44 56.57×106 0.24
    下载: 导出CSV

    表  4  Jiage数据集上对比实验结果

    Table  4.   Comparison of experimental results on Jiage dataset

    模型 IoU/% mIoU/%
    背景 植被 道路 建筑物
    SegNet[24] 61.42 91.44 45.42 87.27 66.58 70.43
    PSPNet[15] 79.08 96.25 48.81 89.91 81.27 79.06
    DeepLabv3[14] 80.83 95.27 56.51 88.67 78.66 79.99
    GCN[25] 75.77 95.76 58.94 90.11 81.00 80.32
    EMANet[26] 81.93 95.13 63.88 88.37 82.52 82.37
    CCNet[21] 81.29 95.30 67.06 90.86 81.64 83.23
    DMAU-Net[27] 82.02 95.55 67.79 89.77 82.20 83.47
    MagNet[29] 82.37 95.70 70.47 91.31 82.78 84.53
    SAPNet[28] 83.88 96.07 68.37 91.10 84.58 84.80
    DCED-BEM-AFM 83.84 96.25 73.51 92.21 84.52 86.07
    下载: 导出CSV
  • [1] FAN M, LAI S, HUAN G J, et al. Rethinking BiseNet for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 9716-9725.
    [2] LATHA P, RAJ T. Advanced deep learning method for aerial image segmentation of landscape changes in pre-and post-disaster scenarios[J]. Global NEST Journal, 2022, 24(3): 544-552.
    [3] GUO Z L, SHENGOKU H, WU G M, et al. Semantic segmentation for urban planning maps based on U-Net[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2018: 6187-6190.
    [4] FAN R Y, LI F P, HAN W, et al. Fine-scale urban informal settlements mapping by fusing remote sensing images and building data via a Transformer-based multimodal fusion network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5630316.
    [5] ZHU Q Q, ZHANG Y N, WANG L Z, et al. A global context-aware and batch-independent network for road extraction from VHR satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 353-365. doi: 10.1016/j.isprsjprs.2021.03.016
    [6] ZHOU M T, SUI H G, CHEN S X, et al. BT-RoadNet: a boundary and topologically-aware neural network for road extraction from high-resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 288-306. doi: 10.1016/j.isprsjprs.2020.08.019
    [7] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 3431-3440.
    [8] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention. Berlin: Springer, 2015: 234-241.
    [9] WANG X, LI Z S, HUANG Y P, et al. Multimodal medical image segmentation using multi-scale context-aware network[J]. Neurocomputing, 2022, 486: 135-146. doi: 10.1016/j.neucom.2021.11.017
    [10] LUO J, ZHAO L, ZHU L, et al. Multi-scale receptive field fusion network for lightweight image super-resolution[J]. Neurocomputing, 2022, 493: 314-326. doi: 10.1016/j.neucom.2022.04.038
    [11] LIN D, SHEN D G, SHEN S T, et al. ZigZagNet: fusing top-down and bottom-up context for object segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 7482-7491.
    [12] 吴泽康, 赵姗, 李宏伟, 等. 遥感图像语义分割空间全局上下文信息网络[J]. 浙江大学学报(工学版), 2022, 56(4): 795-802.

    WU Z K, ZHAO S, LI H W, et al. Spatial global context information network for semantic segmentation of remote sensing image[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(4): 795-802(in Chinese).
    [13] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
    [14] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinkingatrous convolution for semantic image segmentation[EB/OL]. (2017-06-17)[2023-03-01]. https://arxiv.org/abs/1706.05587.
    [15] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6230-6239.
    [16] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
    [18] ZHOU Z, ZHOU Y, WANG D L, et al. Self-attention feature fusion network for semantic segmentation[J]. Neurocomputing, 2021, 453: 50-59. doi: 10.1016/j.neucom.2021.04.106
    [19] 谭大宁, 刘瑜, 姚力波, 等. 基于视觉注意力机制的多源遥感图像语义分割[J]. 信号处理, 2022, 38(6): 1180-1191.

    TAN D N, LIU Y, YAO L B, et al. Semantic segmentation of multi-source remote sensing images based on visual attention mechanism[J]. Journal of Signal Processing, 2022, 38(6): 1180-1191(in Chinese).
    [20] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 3141-3149.
    [21] HUANG Z L, WANG X G, HUANG L C, et al. CCNet: criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 603-612.
    [22] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
    [23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2023-03-01]. https://arxiv.org/abs/1409.1556.
    [24] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. doi: 10.1109/TPAMI.2016.2644615
    [25] PENG C, ZHANG X Y, YU G, et al. Large kernel matters—improve semantic segmentation by global convolutional network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1743-1751.
    [26] LI X, ZHONG Z S, WU J L, et al. Expectation-maximization attention networks for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 9166-9175.
    [27] YANG Y, DONG J W, WANG Y H, et al. DMAU-Net: an attention-based multiscale max-pooling dense network for the semantic segmentation in VHR remote-sensing images[J]. Remote Sensing, 2023, 15(5): 1328. doi: 10.3390/rs15051328
    [28] LI X, XU F, LIU F, et al. A synergistical attention model for semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5400916.
    [29] HUYNH C, TRAN A T, LUU K, et al. Progressive semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 16750-16759.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  99
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-31
  • 录用日期:  2023-05-26
  • 网络出版日期:  2023-06-30
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答