留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多约束下升力式再入飞行器可达域计算方法

冉云霆 泮斌峰

何春涛, 王聪, 魏英杰, 等 . 圆柱体垂直入水空泡形态试验[J]. 北京航空航天大学学报, 2012, (11): 1542-1546.
引用本文: 冉云霆,泮斌峰. 多约束下升力式再入飞行器可达域计算方法[J]. 北京航空航天大学学报,2025,51(3):904-909 doi: 10.13700/j.bh.1001-5965.2023.0157
He Chuntao, Wang Cong, Wei Yingjie, et al. Vertical water entry cavity of cylinder body[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (11): 1542-1546. (in Chinese)
Citation: RAN Y T,PAN B F. A method for calculating reachability regions of lift re-entry vehicles with multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):904-909 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0157

多约束下升力式再入飞行器可达域计算方法

doi: 10.13700/j.bh.1001-5965.2023.0157
详细信息
    通讯作者:

    E-mail:panbinfeng@nwpu.edu.cn

  • 中图分类号: V448.235

A method for calculating reachability regions of lift re-entry vehicles with multiple constraints

More Information
  • 摘要:

    针对升力式再入飞行器再入过程中的热流率、过载和动压受约束问题,提出一种多约束条件下的再入可达域计算方法。基于虚目标法建立了不考虑状态不等式过程约束的再入可达域最优控制模型;基于无过程约束问题的最优控制设计预测校正方法,将状态不等式约束转换为控制不等式约束;以X-33再入飞行器为对象完成数值仿真验证。数值仿真结果表明:与传统的依赖于平衡滑翔假设的“软约束”方法相比,所提方法可实现“硬约束”,即使飞行器在短时间内进行大幅度机动,各项过程约束仍能严格满足。

     

  • 图 1  利用虚目标法求解可达域示意图

    Figure 1.  Schematic diagram for solving reachability domain using virtual target method

    图 2  基于预测校正的约束处理算法流程

    Figure 2.  Algorithm flowchart of constraint processing based on predictive correction

    图 3  X-33在施加约束前后的可达域预测结果

    Figure 3.  Prediction results of reachability regions of X-33 before and after applying constraints

    图 4  再入轨迹的高度-速度曲线

    Figure 4.  Altitude velocity curve of re-entry trajectory

    图 5  基于平衡滑翔和泰勒级数约束形式的热流率、过载和动压曲线

    Figure 5.  Heat flow rate, overload, and dynamic pressure curves based on quasi-equilibrium glide conditions and Taylor series constraint forms

    图 6  再入轨迹的倾斜角曲线

    Figure 6.  Inclination angle curve of re-entry entrant trajectory

    表  1  再入飞行器初始状态

    Table  1.   Initial state of re-entry vehicle

    高度/km速度/(m·s−1)经度/(°)纬度/(°)速度倾角/(°)速度方向角/(°)
    79.56100.0243.1−18.3−1.038.3
    下载: 导出CSV
  • [1] GUO H C, HUANG H B, YANG Y. Reentry trajectory planning and guidance method with no-fly zone constraints[C]//Proceedings of the China Automation Congress. Piscataway: IEEE Press, 2021: 4633-4638.
    [2] SARAF A, LEAVITT J, FERCH M, et al. Landing footprint computation for entry vehicles[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004.
    [3] FU S N, LU T Y, YIN J, et al. Rapid algorithm for generating entry landing footprints satisfying the No-fly zone constraint[J]. International Journal of Aerospace Engineering, 2021, 2021: 8827377.
    [4] PENG Q, GUO J G, YANG S J. Genetic algorithm-based re-entry trajectory optimization and footprint determination for lifting body spacecraft[M]// Lecture Notes in Electrical Engineering. Berlin: Springer, 2021: 1369-1379.
    [5] ZHOU C J, LI M J, SHAO L, et al. An improved predictor-corrector guidance algorithm for reentry glide vehicle based on fast landing points position prediction[M]// Lecture Notes in Electrical Engineering. Berlin: Springer, 2023: 639-649.
    [6] 吴楠, 王锋, 赵敏, 等. 高超声速滑翔再入飞行器的可达区快速预测[J]. 国防科技大学学报, 2021, 43(1): 1-6. doi: 10.11887/j.cn.202101001

    WU N, WANG F, ZHAO M, et al. Fast prediction for footprint of hypersonic glide reentry vehicle[J]. Journal of National University of Defense Technology, 2021, 43(1): 1-6(in Chinese). doi: 10.11887/j.cn.202101001
    [7] 冯必鸣, 聂万胜, 李柯. 再入飞行器可达区域近似算法及地面覆盖研究[J]. 航天控制, 2012, 30(6): 43-49. doi: 10.3969/j.issn.1006-3242.2012.06.008

    FENG B M, NIE W S, LI K. Research on closest-aproach of footprint and coverage for reentry vehicle[J]. Aerospace Control, 2012, 30(6): 43-49(in Chinese). doi: 10.3969/j.issn.1006-3242.2012.06.008
    [8] VINH N . Optimal trajectories in atmospheric flight[J]. Space Mankinds Fourth Environment, 1982: 449-468.
    [9] ZHAO J, ZHOU R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1544-1553. doi: 10.1016/j.cja.2013.10.009
    [10] PEI P, FAN S P, WANG W, et al. Online reentry trajectory optimization using modified sequential convex programming for hypersonic vehicle[J]. IEEE Access, 2021, 9: 23511-23525. doi: 10.1109/ACCESS.2021.3056517
    [11] 蔺君, 何英姿, 黄盘兴. 基于差分进化算法的再入可达域快速计算[J]. 中国空间科学技术, 2020, 40(4): 54-60.

    LIN J, HE Y Z, HUANG P X. Fast reentry landing footprint calculation using differential evolution algorithm[J]. Chinese Space Science and Technology, 2020, 40(4): 54-60(in Chinese).
    [12] 肖翔, 杨业, 郭涛, 等. 升力式再入飞行器两种可达区域计算方法的探讨[J]. 航天控制, 2015, 33(2): 39-43. doi: 10.3969/j.issn.1006-3242.2015.02.007

    XIAO X, YANG Y, GUO T, et al. Discussion of two algorithms for generating landing footprint for lifting reentry vehicles[J]. Aerospace Control, 2015, 33(2): 39-43(in Chinese). doi: 10.3969/j.issn.1006-3242.2015.02.007
    [13] LU P. Asymptotic analysis of quasi-equilibrium glide in lifting entry flight[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 662-670. doi: 10.2514/1.15789
    [14] LU P, XUE S B. Rapid generation of accurate entry landing footprints[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 756-767.
    [15] 李惠峰, 谢陵. 基于预测校正方法的RLV再入制导律设计[J]. 北京航空航天大学学报, 2009, 35(11): 1344-1348.

    LI H F, XIE L. Reentry guidance law design for RLV based on predictor-corrector method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1344-1348(in Chinese).
    [16] LU P. Non-linear systems with control and state constraints[J]. Optimal Control Applications and Methods, 1997, 18(5): 313-326. doi: 10.1002/(SICI)1099-1514(199709/10)18:5<313::AID-OCA605>3.0.CO;2-K
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  70
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 录用日期:  2023-09-22
  • 网络出版日期:  2023-11-13
  • 整期出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    常见问答