留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SSA-IWT-EMD的滚动轴承故障诊断方法

雷春丽 焦孟萱 樊高峰 刘世超 薛林林 李建华

钱秀清, 张建宇, 费斌军等 . 球形压头压入中摩擦对材料参数识别的影响[J]. 北京航空航天大学学报, 2008, 34(04): 426-430.
引用本文: 雷春丽,焦孟萱,樊高峰,等. 基于SSA-IWT-EMD的滚动轴承故障诊断方法[J]. 北京航空航天大学学报,2025,51(4):1152-1162 doi: 10.13700/j.bh.1001-5965.2023.0174
Qian Xiuqing, Zhang Jianyu, Fei Binjunet al. Effect of friction on identification of materials properties from spherical indentation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(04): 426-430. (in Chinese)
Citation: LEI C L,JIAO M X,FAN G F,et al. Fault diagnosis method of rolling bearings based on SSA-IWT-EMD[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1152-1162 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0174

基于SSA-IWT-EMD的滚动轴承故障诊断方法

doi: 10.13700/j.bh.1001-5965.2023.0174
基金项目: 国家自然科学基金(51465035);甘肃省自然科学基金(20JR5RA466);兰州理工大学红柳一流学科建设项目
详细信息
    通讯作者:

    E-mail:li_jh@vip.sina.com

  • 中图分类号: TH133.33

Fault diagnosis method of rolling bearings based on SSA-IWT-EMD

Funds: National Natural Science Foundation of China (51465035); Natural Science Foundation of Gansu Province, China (20JR5RA466); Hongliu First-class Disciplines Development Program of Lanzhou University of Technology
More Information
  • 摘要:

    针对小波阈值降噪不充分及经验模态分解(EMD)特征频率提取不明显的问题,提出一种基于麻雀搜索算法-改进小波阈值-EMD(SSA-IWT-EMD)的滚动轴承故障诊断方法。引入2个调节因子,提出一种IWT函数,克服了传统软硬阈值的缺点,并运用SSA对其各参数进行全局寻优,实现滚动轴承信号降噪。提出一种综合指标P对EMD产生的分量进行选取重构,突出信号的故障特征信息。采用包络谱分析实现轴承的故障诊断。仿真和实测结果验证了所提方法的有效性;同时与单一指标选取分量的方法及文献方法进行对比,说明了综合指标P和所提方法具有更强的降噪能力及特征提取能力,包络谱幅值及倍频成分更明显,可以更好地实现对滚动轴承的故障诊断。

     

  • 图 1  小波阈值去噪流程

    Figure 1.  Flow chart of wavelet threshold denoising

    图 2  基于SSA-IWT-EMD的滚动轴承故障诊断流程

    Figure 2.  Flow chart of fault diagnosis of rolling bearings based on SSA-IWT-EMD

    图 3  冲击信号

    Figure 3.  Impact signal

    图 4  仿真信号

    Figure 4.  Simulation signal

    图 5  原始仿真信号包络谱

    Figure 5.  Envelope spectrum of original simulation signal

    图 6  SSA-IWT优化后仿真信号

    Figure 6.  Simulation signal optimized by SSA-IWT

    图 7  仿真信号EMD分解图

    Figure 7.  EMD diagram of simulation signal

    图 8  SSA-IWT-EMD仿真信号包络谱

    Figure 8.  Envelope spectrum of SSA-IWT-EMD simulation signal

    图 9  MFS机械故障试验平台

    Figure 9.  MFS test platform for mechanical fault

    图 10  试验轴承原始信号1

    Figure 10.  Original signal 1 of test bearing

    图 11  原始试验轴承信号1包络谱

    Figure 11.  Envelope spectrum of original signal 1 of test bearing

    图 12  SSA-IWT优化后轴承信号1时域图

    Figure 12.  Time domain diagram of signal 1 of bearing optimized by SSA-IWT

    图 13  试验轴承信号1 EMD分解图

    Figure 13.  EMD diagram of signal 1 of test bearing

    图 14  试验轴承信号1包络谱

    Figure 14.  Envelope spectrum of signal 1 of test bearing

    图 15  试验轴承原始信号2

    Figure 15.  Original signal 2 of test bearing

    图 16  原始试验轴承信号2包络谱

    Figure 16.  Envelope spectrum of signal 2 of test bearing

    图 17  SSA-IWT优化后信号2

    Figure 17.  Signal 2 optimized by SSA-IWT

    图 18  试验轴承信号2 EMD分解图

    Figure 18.  EMD diagram of signal 2 of test bearing

    图 19  SSA-IWT-EMD试验轴承信号2包络谱

    Figure 19.  Envelope spectrum of signal 2 of bearing in SSA-IWT-EMD test

    图 20  峭度指标试验轴承信号2包络谱

    Figure 20.  Envelope spectrum of signal 2 of bearing in kurtosis indicator test

    图 21  文献[23]方法滤波后的实验轴承信号2

    Figure 21.  Signal 2 of test bearing filtered by literature [23] method

    图 22  文献[23]方法EMD分解图

    Figure 22.  EMD diagram of literature [23] method

    图 23  文献[23]方法实际轴承信号2包络谱

    Figure 23.  Envelope spectrum of signal 2 of actual bearing by literature [23] method

    表  1  仿真信号EMD分解分量参数

    Table  1.   Parameters of EMD components of simulation signal

    分量 综合指标P 分量 综合指标P 分量 综合指标P
    IMF1 15.517 IMF4 4.091 IMF7 2.011
    IMF2 7.913 IMF5 4.798 IMF8 2.067
    IMF3 9.848 IMF6 1.888 IMF9 2.307
    下载: 导出CSV

    表  2  ER-6k轴承参数

    Table  2.   Parameters of ER-6k bearing

    轴承节径/mm 滚珠直径/mm 滚动体个数/个 故障直径/mm
    38.70 8 9 1.2
    下载: 导出CSV

    表  3  试验轴承信号1 EMD分解分量参数

    Table  3.   Parameters of EMD components of signal 1 of test bearing

    分量 综合指标P 分量 综合指标P
    IMF1 3.410 IMF6 2.981
    IMF2 3.614 IMF7 1.431
    IMF3 4.319 IMF8 1.643
    IMF4 2.644 IMF9 1.564
    IMF5 2.245 IMF10 0.941
    下载: 导出CSV

    表  4  试验轴承信号2 EMD分解分量参数

    Table  4.   Parameters of EMD components of signal 2 of test bearing

    分量 综合指标P 分量 综合指标P 分量 综合指标P
    IMF1 30.614 IMF4 4.906 IMF7 2.534
    IMF2 21.787 IMF5 5.401 IMF8 2.407
    IMF3 4.825 IMF6 3.149 IMF9 1.557
    下载: 导出CSV

    表  5  试验轴承信号2EMD分解分量峭度参数

    Table  5.   Kurtosis parameters of EMD components of signal 2 of test bearing

    分量 峭度 分量 峭度 分量 峭度
    IMF1 16.225 IMF4 16.772 IMF7 4.629
    IMF2 14.114 IMF5 4.781 IMF8 2.686
    IMF3 10.170 IMF6 5.954 IMF9 1.979
    下载: 导出CSV

    表  6  EMD分解分量峭度参数[23]

    Table  6.   Kurtosis parameters of EMD components[23]

    分量 峭度 分量 峭度
    IMF1 18.152 IMF6 2.616
    IMF2 7.099 IMF7 2.479
    IMF3 6.743 IMF8 1.649
    IMF4 3.680 IMF9 2.202
    IMF5 2.808 IMF10 1.840
    下载: 导出CSV
  • [1] RAI A, UPADHYAY S H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J]. Tribology International, 2016, 96: 289-306. doi: 10.1016/j.triboint.2015.12.037
    [2] 葛兴来, 邹丹. 多层降噪技术及Hilbert变换的轴承故障诊断方法[J]. 电机与控制学报, 2020, 24(8): 9-17.

    GE X L, ZOU D. Bearing fault diagnosis method of multi-layer denoising technologies and Hilbert transformation[J]. Electric Machines and Control, 2020, 24(8): 9-17(in Chinese).
    [3] SHAO R P, HU W T, LI J. Multi-fault feature extraction and diagnosis of gear transmission system using time-frequency analysis and wavelet threshold de-noising based on EMD[J]. Shock and Vibration, 2013, 20(4): 763-780. doi: 10.1155/2013/286461
    [4] 王普, 李天垚, 高学金, 等. 分层自适应小波阈值轴承故障信号降噪方法[J]. 振动工程学报, 2019, 32(3): 548-556.

    WANG P, LI T Y, GAO X J, et al. Bearing fault signal denoising method of hierarchical adaptive wavelet threshold function[J]. Journal of Vibration Engineering, 2019, 32(3): 548-556(in Chinese).
    [5] CUI H Y, QIAO Y Y, YIN Y M, et al. An investigation on early bearing fault diagnosis based on wavelet transform and sparse component analysis[J]. Structural Health Monitoring, 2017, 16(1): 39-49. doi: 10.1177/1475921716661310
    [6] CHEN B J, SHEN B M, CHEN F F, et al. Fault diagnosis method based on integration of RSSD and wavelet transform to rolling bearing[J]. Measurement, 2019, 131: 400-411. doi: 10.1016/j.measurement.2018.07.043
    [7] 崔玲丽, 高立新, 殷海晨, 等. 基于第二代小波的复合故障诊断方法研究[J]. 中国机械工程, 2009, 20(4): 442-446. doi: 10.3321/j.issn:1004-132X.2009.04.015

    CUI L L, GAO L X, YIN H C, et al. Research on composite fault diagnosis method based on the second generation wavelet[J]. China Mechanical Engineering, 2009, 20(4): 442-446(in Chinese). doi: 10.3321/j.issn:1004-132X.2009.04.015
    [8] 王志刚, 李友荣, 李方. 基于谐波小波分析的故障诊断方法研究[J]. 振动与冲击, 2006, 25(2): 125-128. doi: 10.3969/j.issn.1000-3835.2006.02.032

    WANG Z G, LI Y R, LI F. Fault diagnosis method based on harmonic wavelet analysis[J]. Journal of Vibration and Shock, 2006, 25(2): 125-128(in Chinese). doi: 10.3969/j.issn.1000-3835.2006.02.032
    [9] 张晓峰, 李功燕. 应用小波分析提取故障诊断信号的特定频段[J]. 振动与冲击, 2004, 23(4): 47-50. doi: 10.3969/j.issn.1000-3835.2004.04.011

    ZHANG X F, LI G Y. Extraction of fault diagnosis signal’s frequency band with wavelet analysis[J]. Journal of Vibration and Shock, 2004, 23(4): 47-50(in Chinese). doi: 10.3969/j.issn.1000-3835.2004.04.011
    [10] 邓飞跃, 强亚文, 杨绍普, 等. 一种自适应频率窗经验小波变换的滚动轴承故障诊断方法[J]. 西安交通大学学报, 2018, 52(8): 22-29. doi: 10.7652/xjtuxb201808004

    DENG F Y, QIANG Y W, YANG S P, et al. A fault diagnosis method of rolling element bearings with adaptive frequency window empirical wavelet transform[J]. Journal of Xi’an Jiaotong University, 2018, 52(8): 22-29(in Chinese). doi: 10.7652/xjtuxb201808004
    [11] TUERXUN W, XU C, GUO H Y, et al. Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm[J]. IEEE Access, 2021, 9: 69307-69315. doi: 10.1109/ACCESS.2021.3075547
    [12] REN Y, ZHANG L L, CHEN J T, et al. Noise reduction study of pressure pulsation in pumped storage units based on sparrow optimization VMD combined with SVD[J]. Energies, 2022, 15(6): 2073. doi: 10.3390/en15062073
    [13] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454(1971): 903-998. doi: 10.1098/rspa.1998.0193
    [14] KESHTAN M N, NOURI KHAJAVI M. Bearings fault diagnosis using vibrational signal analysis by EMD method[J]. Research in Nondestructive Evaluation, 2016, 27(3): 155-174. doi: 10.1080/09349847.2015.1103921
    [15] 丛晓妍, 王增才, 王保平, 等. 基于 EMD 与峭度滤波的煤岩界面识别[J]. 振动、测试与诊断, 2015, 35(5): 950-954.

    CONG X Y, WANG Z C, WANG B P, et al. Identification of coal-rock interface based on EMD and kurtosis filtering[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(5): 950-954(in Chinese).
    [16] 郭俊超, 甄冬, 孟召宗, 等. 基于WAEEMD和MSB的滚动轴承故障特征提取[J]. 中国机械工程, 2021, 32(15): 1793-1800. doi: 10.3969/j.issn.1004-132X.2021.15.004

    GUO J C, ZHEN D, MENG Z Z, et al. Feature extraction of rolling bearings based on WAEEMD and MSB[J]. China Mechanical Engineering, 2021, 32(15): 1793-1800(in Chinese). doi: 10.3969/j.issn.1004-132X.2021.15.004
    [17] DENG C X, CHEN X X, LI S Q, et al. The improved wavelet threshold function and its application[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(7): 79-92. doi: 10.14257/ijsip.2016.9.7.08
    [18] ZHANG Y, DING W F, PAN Z F, et al. Improved wavelet threshold for image de-noising[J]. Frontiers in Neuroscience, 2019, 13: 39. doi: 10.3389/fnins.2019.00039
    [19] MO F, MO Q, CHEN Y Y, et al. Wavelet quant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis[J]. BMC Bioinformatics, 2010, 11: 219. doi: 10.1186/1471-2105-11-219
    [20] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
    [21] 张龙, 熊国良, 黄文艺. 复小波共振解调频带优化方法和新指标[J]. 机械工程学报, 2015, 51(3): 129-138. doi: 10.3901/JME.2015.03.129

    ZHANG L, XIONG G L, HUANG W Y. New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J]. Journal of Mechanical Engineering, 2015, 51(3): 129-138(in Chinese). doi: 10.3901/JME.2015.03.129
    [22] 齐咏生, 樊佶, 李永亭, 等. 一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用[J]. 振动与冲击, 2020, 39(21): 140-150.

    QI Y S, FAN J, LI Y T, et al. An improved deconvolution algorithm and its application in compound fault diagnosis of rolling bearings[J]. Journal of Vibration and Shock, 2020, 39(21): 140-150(in Chinese).
    [23] HAN X M, XU J, SONG S N, et al. Crack fault diagnosis of vibration exciter rolling bearing based on genetic algorithm–optimized Morlet wavelet filter and empirical mode decomposition[J]. International Journal of Distributed Sensor Networks, 2022, 18(8): 155013292211145.
  • 加载中
图(23) / 表(6)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  91
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 录用日期:  2023-06-30
  • 网络出版日期:  2023-07-10
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答