Loading [MathJax]/jax/output/SVG/jax.js

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不确定理论的网络时间可靠性评估方法

马骥 李瑞莹 张清源 康锐

吕永乐, 郎荣玲, 路 辉, 等 . 航空发动机性能参数联合RBFPN和FAR预测[J]. 北京航空航天大学学报, 2010, 36(2): 131-134.
引用本文: 马骥,李瑞莹,张清源,等. 基于不确定理论的网络时间可靠性评估方法[J]. 北京航空航天大学学报,2025,51(4):1267-1276 doi: 10.13700/j.bh.1001-5965.2023.0191
Lü Yongle, Lang Rongling, Lu Hui, et al. Prediction of aeroengine-s performance parameter combining RBFPN and FAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2): 131-134. (in Chinese)
Citation: MA J,LI R Y,ZHANG Q Y,et al. Network time reliability evaluation method based on uncertainty theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1267-1276 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0191

基于不确定理论的网络时间可靠性评估方法

doi: 10.13700/j.bh.1001-5965.2023.0191
基金项目: 国家自然科学基金(61773044,62073009);可靠性与环境工程技术重点实验室基金(WDZC2019601A301)
详细信息
    通讯作者:

    E-mail:liruiying@buaa.edu.cn

  • 中图分类号: TB114.3

Network time reliability evaluation method based on uncertainty theory

Funds: National Natural Science Foundation of China (61773044,62073009); Fund for Science and Technology on Reliability and Environmental Engineering Laboratory (WDZC2019601A301)
More Information
  • 摘要:

    针对现有的网络时间可靠性评估方法往往只考虑固有不确定性的影响,而忽略由于故障信息不足而导致的认知不确定性对可靠性评估结果影响的问题,提出一种基于不确定理论的新方法。根据网络可靠性关注的节点范围,设计了单节点对和多节点对时间可靠度两类度量参数,提出了扩展不确定网络模型可直接实现对节点和链路上的认知不确定性特征建模,并进一步设计了基于最可靠路径和最可靠扩展不确定子网络的单节点和多节点对时间可靠度算法。分别以一个六节点网络、中国教育和科研计算机网(CERNET)骨干网络为例,应用所提方法实现了2种时间可靠性指标的评估,验证了所提方法的正确性和有效性。

     

  • 图 1  扩展不确定网络

    Figure 1.  Extended uncertain network

    图 2  可靠扩展不确定网络

    Figure 2.  Reliable extended uncertain network

    图 3  CERNET骨干网络拓扑结构[32]

    Figure 3.  Topology structure of CERNET backbone network [32]

    图 4  不同时延阈值下多节点对时间可靠度

    Figure 4.  Multi-node-pair time reliability under different delay thresholds

    表  1  节点和链路信息

    Table  1.   Node and link information

    节点
    编号
    节点时间/
    ms
    节点不确定
    测度
    链路
    编号
    节点时间/
    ms
    节点不确定
    测度
    1 1 0.99 e1,2 1.5 0.96
    2 1.9 0.97 e1,4 1 0.92
    3 1.9 0.94 e2,3 1 0.93
    4 1.9 0.96 e2,5 1 0.98
    5 1.9 0.95 e3,4 1.5 0.91
    6 1 0.98 e3,6 1.5 0.95
    e4,5 2 0.97
    e5,6 1 0.94
    下载: 导出CSV

    表  2  满足节点1和节点6传输时间要求的子网络信息

    Table  2.   Subnetwork information meeting transmission time requirement of node 1 and node 6

    编号 子网络 子网络可靠度
    1 0.99∧0.96∧0.97∧0.93∧0.94∧0.95∧0.98=0.93
    4 0.99∧0.96∧0.97∧0.98∧0.95∧0.94∧0.98=0.94
    95 0.99∧0.96∧0.97∧0.93∧0.94∧0.95∧0.98∧0.94∧0.95∧0.91∧0.97∧0.96∧0.98∧0.92=0.91
    下载: 导出CSV

    表  3  满足10个节点对传输时间要求的子网络信息

    Table  3.   Subnetwork information meeting transmission time requirement of 10 node pairs

    编号 子网络 子网络可靠度
    1 0.99∧0.96∧0.97∧0.93∧0.94∧0.98∧0.92∧0.96∧0.97∧0.95∧0.91=0.91
    4 0.99∧0.96∧0.97∧0.98∧0.95∧0.94∧0.97∧0.96∧0.94∧0.98∧0.95=0.94
    79 0.99∧0.96∧0.97∧0.93∧0.94∧0.95∧0.98∧0.94∧0.95∧0.91∧0.97∧0.96∧0.98∧0.92=0.91
    下载: 导出CSV

    表  4  节点信息

    Table  4.   Node information

    节点时延/ms不确定
    测度
    节点时延/ms不确定
    测度
    哈尔滨20.983杭州20.991
    长春20.988厦门20.989
    沈阳20.995广州20.986
    大连20.987长沙20.989
    北京10.991武汉20.980
    天津20.986郑州20.986
    济南20.987重庆20.987
    合肥20.983成都20.992
    南京20.988西安20.996
    上海20.994兰州20.989
    下载: 导出CSV

    表  5  链路信息

    Table  5.   Link information

    链路 时延/ms 不确定
    测度
    链路 时延/ms 不确定
    测度
    哈尔滨-长春 1 0.986 上海-杭州 0.5 0.981
    长春-沈阳 1 0.983 杭州-厦门 3 0.985
    沈阳-大连 1 0.978 厦门-广州 2 0.991
    沈阳-北京 2 0.986 广州-长沙 2 0.984
    北京-天津 0.5 0.987 长沙-武汉 1 0.989
    北京-郑州 2 0.987 武汉-郑州 1.5 0.976
    天津-济南 1 0.988 武汉-重庆 3 0.982
    济南-合肥 1 0.986 郑州-西安 1.5 0.979
    合肥-南京 0.5 0.983 重庆-成都 1 0.993
    合肥-武汉 1.5 0.979 成都-西安 2.5 0.988
    下载: 导出CSV

    表  6  不同节点对之间的单节点对时间可靠度

    Table  6.   Single-node-pair time reliability between different node pairs

    节点对 可靠度 最可靠路径
    哈尔滨-广州 0.979 哈尔滨-长春-沈阳-北京-天津-济南-
    合肥-武汉-长沙-广州
    成都-上海 0.983 成都-重庆-武汉-合肥-南京-上海
    兰州-合肥 0.981 兰州-西安-郑州-北京-天津-济南-合肥
    下载: 导出CSV

    表  7  不同时延阈值下的单节点对时间可靠度

    Table  7.   Single-node-pair time reliability under different delay thresholds

    时延
    阈值/ms
    可靠度最可靠路径
    300.976哈尔滨-长春-沈阳-北京-郑州-武汉-长沙-广州
    350.979哈尔滨-长春-沈阳-北京-天津-济南-
    合肥-武汉-长沙-广州
    400.981哈尔滨-长春-沈阳-北京-天津-济南-
    合肥-南京-上海-杭州-厦门-广州
    下载: 导出CSV

    表  8  多节点对时间可靠度

    Table  8.   Multi-node-pair time reliability

    要求节点对数 可靠度 要求节点对数 可靠度
    19 0.984 114 0.980
    38 0.983 133 0.979
    57 0.981 152 0.979
    76 0.981 171 0.978
    95 0.980 190 0.976
     注:可靠度指要求达到传输时间要求的节点对数占网络总节点对数的比例。
    下载: 导出CSV

    表  9  2种算法的运行时间

    Table  9.   Running time of two algorithms

    算法 运行时间/ms
    单节点对时间可靠度算法 2.689
    多节点对时间可靠度算法 93.61
    下载: 导出CSV
  • [1] GAUR V, YADAV O P, SONI G, et al. A literature review on network reliability analysis and its engineering applications[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2021, 235(2): 167-181. doi: 10.1177/1748006X20962258
    [2] HONG S, LV C, ZHAO T D, et al. Cascading failure analysis and restoration strategy in an interdependent network[J]. Journal of Physics A: Mathematical and Theoretical, 2016, 49(19): 195101. doi: 10.1088/1751-8113/49/19/195101
    [3] HONG S, ZHU J X, BRAUNSTEIN L A, et al. Cascading failure and recovery of spatially interdependent networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017(10): 103208. doi: 10.1088/1742-5468/aa8c36
    [4] 黄宁, 伍志韬. 网络可靠性评估模型与算法综述[J]. 系统工程与电子技术, 2013, 35(12): 2651-2660. doi: 10.3969/j.issn.1001-506X.2013.12.32

    HUANG N, WU Z T. Survey of network reliability evaluation models and algorithms[J]. Systems Engineering and Electronics, 2013, 35(12): 2651-2660(in Chinese). doi: 10.3969/j.issn.1001-506X.2013.12.32
    [5] LIU Z, HUANG N, LI D P. An algorithm for delay-reliability in communication networks based on probabilistic user equilibrium model[C]// Proceedings of the International Conference on Information Science and Cloud Computing Companion. Piscataway: IEEE Press, 2013: 135-141.
    [6] WU Z T, HUANG N, LI R Y, et al. A delay reliability estimation method for avionics full duplex switched ethernet based on stochastic network calculus[J]. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 2015, 17(2): 288-296. doi: 10.17531/ein.2015.2.17
    [7] WANG W X, GUO R J. Travel time reliability of highway network under multiple failure modes[J]. Sustainability, 2022, 14(12): 7256. doi: 10.3390/su14127256
    [8] ZHANG X X, ZHAO M, APPIAH J, et al. Prediction of travel time reliability on interstates using linear quantile mixed models[J]. Transportation Research Record: Journal of the Transportation Research Board, 2023, 2677(2): 774-791. doi: 10.1177/03611981221108380
    [9] JUNG Y, JO H, CHOO J, et al. Statistical model calibration and design optimization under aleatory and epistemic uncertainty[J]. Reliability Engineering & System Safety, 2022, 222: 108428.
    [10] BAUDRIT C, DUBOIS D. Practical representations of incomplete probabilistic knowledge[J]. Computational Statistics & Data Analysis, 2006, 51(1): 86-108.
    [11] SIMON C, WEBER P. Imprecise reliability by evidential networks[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2009, 223(2): 119-131. doi: 10.1243/1748006XJRR190
    [12] MUSHARRAF M, BRADBURY-SQUIRES D, KHAN F, et al. A virtual experimental technique for data collection for a Bayesian network approach to human reliability analysis[J]. Reliability Engineering & System Safety, 2014, 132: 1-8.
    [13] FILIPPI G, VASILE M, KRPELIK D, et al. Space systems resilience optimisation under epistemic uncertainty[J]. Acta Astronautica, 2019, 165: 195-210. doi: 10.1016/j.actaastro.2019.08.024
    [14] BEER M, FERSON S, KREINOVICH V. Imprecise probabilities in engineering analyses[J]. Mechanical Systems and Signal Processing, 2013, 37(1-2): 4-29. doi: 10.1016/j.ymssp.2013.01.024
    [15] ZADEH L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1999, 100: 9-34. doi: 10.1016/S0165-0114(99)80004-9
    [16] MOORE R E. Methods and applications of interval analysis[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1979.
    [17] MI J H, LU N, LI Y F, et al. An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties[J]. Reliability Engineering & System Safety, 2022, 220: 108295.
    [18] QI X J, CHENG Q. Imprecise reliability assessment of generating systems involving interval probability[J]. IET Generation, Transmission & Distribution, 2017, 11(17): 4332-4337.
    [19] ZHANG X F, LI R M, LIU M, et al. Evaluating travel time reliability based on fuzzy logic[J]. Applied Mechanics and Materials, 2011, 97-98: 952-955. doi: 10.4028/www.scientific.net/AMM.97-98.952
    [20] KANG R, ZHANG Q Y, ZENG Z G, et al. Measuring reliability under epistemic uncertainty: review on non-probabilistic reliability metrics[J]. Chinese Journal of Aeronautics, 2016, 29(3): 571-579. doi: 10.1016/j.cja.2016.04.004
    [21] LIU B D. Uncertainty theory[M]. 2nd ed. Berlin: Springer-Verlag, 2007: 205-234.
    [22] ZHANG Q Y, KANG R, WEN M L. Belief reliability for uncertain random systems[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(6): 3605-3614. doi: 10.1109/TFUZZ.2018.2838560
    [23] 康锐. 确信可靠性理论与方法[M]. 北京: 国防工业出版社, 2020: 63-65.

    KANG R. Belief reliability theory and methodology[M]. Beijing: National Defense Industry Press, 2020: 63-65 (in Chinese).
    [24] LIU Y H. Uncertain random variables: a mixture of uncertainty and randomness[J]. Soft Computing, 2013, 17(4): 625-634. doi: 10.1007/s00500-012-0935-0
    [25] WANG S, YANG D, LU J. A connectivity reliability-cost approach for path selection in the maritime transportation of China’s crude oil imports[J]. Maritime Policy & Management, 2018, 45(5): 567-584.
    [26] HOSSEINI A, PISHVAEE M S. Capacity reliability under uncertainty in transportation networks: an optimization framework and stability assessment methodology[J]. Fuzzy Optimization and Decision Making, 2022, 21(3): 479-512. doi: 10.1007/s10700-021-09374-9
    [27] ZENG Z G, KANG R, WEN M L, et al. A model-based reliability metric considering aleatory and epistemic uncertainty[J]. IEEE Access, 2017, 5: 15505-15515. doi: 10.1109/ACCESS.2017.2733839
    [28] KARGER D R. A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem[J]. IAM Review, 2001, 43(3): 499-522.
    [29] YEH W C. An improved sum-of-disjoint-products technique for symbolic multi-state flow network reliability[J]. IEEE Transactions on Reliability, 2015, 64(4): 1185-1193.
    [30] LIU W. Uncertain programming models for shortest path problem with uncertain arc lengths[C]//Proceedings of the First International Conference on Uncertainty Theory. Urumchi: Journal of the Operations Research Society of China, 2010: 148-153.
    [31] 高原. 不确定图与不确定网络[D]. 北京: 清华大学, 2013: 21-26.

    GAO Y. Uncertain graph and uncertain network[D]. Beijing: Tsinghua University, 2013: 21-26 (in Chinese).
    [32] 李瑞莹, 李枚楠. 基于Monte Carlo和启发式算法的网络可靠性分配[J]. 北京理工大学学报, 2014, 34(7): 695-700.

    LI R Y, LI M N. Network reliability allocation based on Monte Carlo and heuristic algorithm[J]. Transactions of Beijing Institute of Technology, 2014, 34(7): 695-700 (in Chinese).
  • 加载中
图(4) / 表(9)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  71
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-21
  • 录用日期:  2023-07-20
  • 网络出版日期:  2023-07-28
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答