留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于残差全局上下文注意和跨层特征融合的去雾网络

杨燕 陈飞

刘宇, 张振鹏, 吴汉基, 等 . 电弧等离子体发动机初步研究[J]. 北京航空航天大学学报, 1998, 24(3): 365-368.
引用本文: 杨燕,陈飞. 基于残差全局上下文注意和跨层特征融合的去雾网络[J]. 北京航空航天大学学报,2025,51(4):1048-1058 doi: 10.13700/j.bh.1001-5965.2023.0194
Liu Yu, Zhang Zhenpeng, Wu Hanji, et al. Preliminary Study on Arcjet[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(3): 365-368. (in Chinese)
Citation: YANG Y,CHEN F. Dehazing network based on residual global contextual attention and cross-layer feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1048-1058 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0194

基于残差全局上下文注意和跨层特征融合的去雾网络

doi: 10.13700/j.bh.1001-5965.2023.0194
基金项目: 国家自然科学基金(61561030,62063014);甘肃省高等学校产业支撑计划(2021CYZC-04);兰州交通大学研究生教改项目(JG201928);甘肃省教育厅优秀研究生“创新之星”项目(2023CXZX-547)
详细信息
    通讯作者:

    E-mail:yangyantd@mail.lzjtu.cn

  • 中图分类号: TP391.4

Dehazing network based on residual global contextual attention and cross-layer feature fusion

Funds: National Natural Science Foundation of China (61561030,62063014); Industrial Support Program for Higher Education Institutions in Gansu Province (2021CYZC-04); Lanzhou Jiaotong University Graduate Teaching and Research Project (JG201928); Outstanding Graduate “Innovation Star” Project of Gansu Provincial Department of Education (2023CXZX-547)
More Information
  • 摘要:

    基于深度学习的图像去雾算法通常在提取特征时使用传统的卷积层,容易造成图像的细节和边缘等信息丢失,提取特征时忽略图像的位置信息,融合特征时忽略图像原始信息,不能恢复出结构完整、清晰的高质量无雾图像。针对该问题,提出了一种基于残差全局上下文注意和跨层特征融合的去雾算法。对提出的残差全局上下文注意块串行得到残差组结构,并对网络的前2层(即浅层)进行特征提取,得到浅层丰富的上下文信息;引入坐标注意力,建立具有位置信息的注意力图,并将其应用于残差上下文特征提取,放置在网络的第3层(即深层),提取更深层次的语义信息;在网络中间层,通过跨层融合来自不同分辨率流的特征信息,增强深浅层的信息交换,达到特征增强的目的;聚合网络得到具有丰富语义信息的特征与原始输入特征,提升复原效果。在RESIDE和Haze4K数据集上的实验结果表明:所提算法在视觉效果与客观指标上都取得了较好的效果。

     

  • 图 1  网络总体结构

    Figure 1.  Overall network structure

    图 2  残差全局上下文注意组

    Figure 2.  Residual global contextual attention group

    图 3  残差全局上下文注意块

    Figure 3.  Residual global contextual attention block

    图 4  全局上下文注意示意图

    Figure 4.  Global contextual attention

    图 5  残差全局上下文位置块

    Figure 5.  Residual global contextual location block

    图 6  坐标注意力示意图

    Figure 6.  Coordinate attention

    图 7  跨层特征融合

    Figure 7.  Cross layers feature fusion

    图 8  CBAM示意图

    Figure 8.  Convolutional block attention module

    图 9  像素注意力示意图

    Figure 9.  Pixel attention

    图 10  不同算法在SOTS室内测试集上的复原结果

    Figure 10.  Recovery results of different algorithms on SOTS-indoor test set

    图 11  不同算法在Haze4K测试集上的复原结果

    Figure 11.  Recovery results of different algorithms on Haze4K test set

    图 12  不同算法在SOTS室外测试集上的复原结果

    Figure 12.  Recovery results of different algorithms on SOTS-outdoor test set

    图 13  不同算法下真实图像的复原结果

    Figure 13.  Recovery results of real-world images by different algorithms

    图 14  不同算法下数据集上图像的复原结果及局部放大展示

    Figure 14.  Recovery results and partial amplification display of images in datasets by different algorithms

    图 15  不同算法下真实图像的复原结果及局部放大展示

    Figure 15.  Recovery results and partial amplification display of real-world images by different algorithms

    图 16  消融实验主观对比

    Figure 16.  Subjective comparison of ablation experiment

    表  1  不同算法在不同测试集上的评测指标

    Table  1.   Evaluation metrics for different algorithms on different test sets

    算法 PSNR/dB SSIM
    SOTS室内 Haze4K SOTS室外 SOTS室内 Haze4K SOTS室外
    DCP[1] 16.52 14.21 19.03 0.8186 0.7246 0.8216
    DehazeNet[4] 20.13 19.24 22.16 0.8457 0.8428 0.8233
    AOD-Net[5] 19.08 17.18 19.15 0.8503 0.8349 0.8458
    GCANet[13] 30.20 23.57 30.14 0.9806 0.9492 0.9521
    FFA-Net[7] 33.29 24.97 30.79 0.9764 0.9514 0.9342
    UHD[8] 21.59 13.28 25.80 0.8679 0.7457 0.9639
    SGID[10] 33.45 21.25 29.98 0.9856 0.9291 0.9780
    本文 34.14 25.53 31.29 0.9830 0.9624 0.9808
    下载: 导出CSV

    表  2  平均运行时间对比

    Table  2.   Average runtime comparison

    算法 平均运行时间/s
    DCP[1] 1.907
    DehazeNet[4] 0.812
    AOD-Net[5] 0.574
    GCANet[13] 0.914
    FFA-Net[7] 1.578
    UHD[8] 0.896
    SGID[10] 1.102
    本文 1.079
    下载: 导出CSV

    表  3  消融实验

    Table  3.   Ablation experiment

    模块 PSNR/dB SSIM
    Base 27.25 0.9562
    Base+RGCA 28.89 0.9619
    Base+RGCA+RG-C 28.85 0.9761
    Base+RG-C+LHFF 31.17 0.9792
    Base+RGCA+LHFF 30.61 0.9780
    本文 33.08 0.9814
    下载: 导出CSV
  • [1] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    [2] ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533. doi: 10.1109/TIP.2015.2446191
    [3] 杨燕, 张金龙, 张浩文. 基于区间估计与透射率自适应约束的去雾算法[J]. 北京航空航天大学学报, 2022, 48(1): 15-26.

    YANG Y, ZHANG J L, ZHANG H W. Dehazing algorithm based on interval estimation and adaptive constraints of transmittance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 15-26(in Chinese) .
    [4] CAI B L, XU X M, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198. doi: 10.1109/TIP.2016.2598681
    [5] LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 4780-4788.
    [6] DONG H, PAN J S, XIANG L, et al. Multi-scale boosted dehazing network with dense feature fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 2154-2164.
    [7] QIN X, WANG Z L, BAI Y C, et al. FFA-Net: feature fusion attention network for single image dehazing[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 11908-11915.
    [8] ZHENG Z R, REN W Q, CAO X C, et al. Ultra-high-definition image dehazing via multi-guided bilateral learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 16180-16189.
    [9] WU H Y, QU Y Y, LIN S H, et al. Contrastive learning for compact single image dehazing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 10546-10555.
    [10] BAI H R, PAN J S, XIANG X G, et al. Self-guided image dehazing using progressive feature fusion[J]. IEEE Transactions on Image Processing, 2022, 31: 1217-1229. doi: 10.1109/TIP.2022.3140609
    [11] LIU X H, MA Y R, SHI Z H, et al. GridDehazeNet: attention-based multi-scale network for image dehazing[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 7313-7322.
    [12] LI R D, PAN J S, LI Z C, et al. Single image dehazing via conditional generative adversarial network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8202-8211.
    [13] CHEN D D, HE M M, FAN Q N, et al. Gated context aggregation network for image dehazing and deraining[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2019: 1375-1383.
    [14] CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE Press, 2019: 1971-1980.
    [15] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 13708-13717.
    [16] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
    [17] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [18] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
    [19] LI B Y, REN W Q, FU D P, et al. Benchmarking single image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492-505. doi: 10.1109/TIP.2018.2867951
    [20] LIU Y, ZHU L, PEI S D, et al. From synthetic to real: image dehazing collaborating with unlabeled real data[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 50-58.
    [21] HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 558-567.
    [22] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [23] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  41
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 录用日期:  2023-08-04
  • 网络出版日期:  2023-09-21
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答