留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于异常点重构的调频引信抗扫频干扰方法

段乐帆 郝新红 陈齐乐

孙建成, 张太镒, 刘枫等 . 一种新的快速衰落信道非线性预测算法[J]. 北京航空航天大学学报, 2005, 31(05): 499-503.
引用本文: 段乐帆,郝新红,陈齐乐. 基于异常点重构的调频引信抗扫频干扰方法[J]. 北京航空航天大学学报,2025,51(4):1377-1384 doi: 10.13700/j.bh.1001-5965.2023.0199
Sun Jiancheng, Zhang Taiyi, Liu Fenget al. Novel nonlinear prediction algorithm for fast fading channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(05): 499-503. (in Chinese)
Citation: DUAN L F,HAO X H,CHEN Q L. Anti-sweep jamming method for FM fuze based on outlier reconstruction[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1377-1384 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0199

基于异常点重构的调频引信抗扫频干扰方法

doi: 10.13700/j.bh.1001-5965.2023.0199
基金项目: 国家自然科学基金(61973037)
详细信息
    通讯作者:

    E-mail:haoxinhong@bit.edu.cn

  • 中图分类号: V221+.3;TB553

Anti-sweep jamming method for FM fuze based on outlier reconstruction

Funds: National Natural Science Foundation of China (61973037)
More Information
  • 摘要:

    针对调频引信对抗扫频式干扰的问题,提出一种基于异常点重构的调频引信抗扫频干扰方法。该方法基于迭代滤波分解(IFD)算法,将引信中频信号分解为本征模态函数(IMF)分量;扫频干扰在IMF分量中表现为异常点,对IMF分量进行异常点检测与消除,并利用长短时记忆(LSTM)网络构建数据重构网络模型,对异常点部分进行数据重构,可以实现对扫频干扰的抑制。通过仿真验证了所提方法的有效性,结果表明该方法提高了调频引信对抗扫频式干扰的能力。

     

  • 图 1  抗干扰总体方案

    Figure 1.  General scheme of anti-jamming

    图 2  IFD算法流程

    Figure 2.  Flow chart of IFD algorithm

    图 3  LSTM单元结构

    Figure 3.  LSTM unit structure

    图 4  数据重构流程

    Figure 4.  Flow chart of data reconstruction

    图 5  无扫频干扰时中频信号IFD分解结果

    Figure 5.  IFD results of intermediate frequency signal without sweep jamming

    图 6  IMF6分量功率谱分析

    Figure 6.  Power spectrum analysis of IMF6 component

    图 7  扫频式干扰作用下引信输出

    Figure 7.  Fuze output under sweep jamming

    图 8  扫频干扰作用下中频信号IMF6分量

    Figure 8.  IMF6 component of intermediate frequency signal under sweep jamming

    图 9  异常点消除后的IMF6分量

    Figure 9.  IMF6 component after outlier removal

    图 10  数据重构后的IMF6分量

    Figure 10.  IMF6 component after data reconstruction

    图 11  采用异常点重构抗干扰方法的引信输出

    Figure 11.  Fuze output using anti-jamming method by outlier reconstruction

    表  1  仿真参数

    Table  1.   Simulation parameters

    类别 数值
    载波频率/MHz 300
    调制频偏/MHz 25
    调制频率/kHz 100
    采样频率/MHz 5
    扫频起始频率/MHz 200
    扫频带宽/MHz 200
    扫频点数 100
    驻留时间/μs 2
    干信比/dB 0
    下载: 导出CSV

    表  2  LSTM网络参数

    Table  2.   LSTM network parameters

    类别数值
    输入层特征数1
    LSTM层隐含单元数50
    全连接层输出维数1
    最大训练周期200
    初始学习率0.01
    学习率折损周期100
    学习率折损因子0.1
    下载: 导出CSV

    表  3  谐波信号数据重构相似度

    Table  3.   Similarity of harmonic signal data reconstruction

    干信比/dB数据重构相似度/%
    093.67
    592.53
    1090.80
    下载: 导出CSV

    表  4  各方法的数据重构相似度与平均处理时间

    Table  4.   Data reconstruction similarity and average processing time of each method

    核心算法数据重构相似度/%平均处理时间/s
    IFD90.800.0027
    EEMD84.264.9404
    SSA87.561.5795
    下载: 导出CSV
  • [1] 崔占忠, 宋世和, 徐立新. 近炸引信原理[M]. 3版. 北京: 北京理工大学出版社, 2009: 112-119.

    CUI Z Z, SONG S H, XU L X. Principle of proximity fuze[M]. 3rd ed. Beijing: Beijing Institute of Technology Press, 2009: 112-119 (in Chinese).
    [2] 赵惠昌. 无线电引信设计原理与方法[M]. 北京: 国防工业出版社, 2012: 35.

    ZHAO H C. Fundamentals and methodology of radio fuze[M]. Beijing: National Defense Industry Press, 2012: 35 (in Chinese).
    [3] GIAQUINTO G, HARTLEY T. ALQ-218(V)(ICAP III)[J]. An electronic Warfare Forecast, 2012 (APR.): 23-28.
    [4] RAO G N, SASTRY C S, DIVAKAR N. Trends in electronic warfare[J]. IETE Technical Review, 2003, 20: 139-150. doi: 10.1080/02564602.2003.11417078
    [5] 岳凯, 郝新红, 栗苹, 等. 基于分数阶傅里叶变换的线性调频引信定距方法[J]. 兵工学报, 2015, 36(5): 801-808. doi: 10.3969/j.issn.1000-1093.2015.05.006

    YUE K, HAO X H, LI P, et al. Research on ranging method for linear frequency modulation radio fuze based on fractional Fourier transform[J]. Acta Armamentarii, 2015, 36(5): 801-808 (in Chinese). doi: 10.3969/j.issn.1000-1093.2015.05.006
    [6] 张天鹏, 刘忙龙, 谢嘉. 基于FRFT的调频引信LFM干扰抑制改进方法[J]. 探测与控制学报, 2019, 41(2): 22-25.

    ZHANG T P, LIU M L, XIE J. Improvement of FM fuze LFM interference suppression based on FRFT[J]. Journal of Detection & Control, 2019, 41(2): 22-25(in Chinese).
    [7] 孔志杰, 郝新红, 栗苹, 等. 调频引信谐波时序检测抗干扰方法及实现[J]. 北京航空航天大学学报, 2018, 44(3): 549-555.

    KONG Z J, HAO X H, LI P, et al. Harmonic timing sequence detection anti-jamming method and its implementation for FM fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 549-555(in Chinese).
    [8] 陈齐乐, 郝新红, 闫晓鹏, 等. 变调制率调频引信双通道相关检测抗数字射频存储干扰方法[J]. 兵工学报, 2019, 40(3): 449-455. doi: 10.3969/j.issn.1000-1093.2019.03.001

    CHEN Q L, HAO X H, YAN X P, et al. Anti-DRFM jamming method using dual-channel harmonic correlation detection for variable chirp rate FM fuze[J]. Acta Armamentarii, 2019, 40(3): 449-455(in Chinese). doi: 10.3969/j.issn.1000-1093.2019.03.001
    [9] 陈齐乐, 郝新红, 闫晓鹏, 等. 基于谐波系数幅值平均的复合调制引信抗扫频式干扰方法[J]. 北京航空航天大学学报, 2020, 46(7): 1317-1324.

    CHEN Q L, HAO X H, YAN X P, et al. Anti sweep jamming method of hybrid modulation fuze based on harmonic coefficient amplitude averaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1317-1324(in Chinese).
    [10] 李泽, 闫晓鹏, 栗苹, 等. 扫频式干扰对调频多普勒引信的干扰机理研究[J]. 兵工学报, 2017, 38(9): 1716-1722. doi: 10.3969/j.issn.1000-1093.2017.09.007

    LI Z, YAN X P, LI P, et al. Jamming mechanism of frequency sweep jamming to FM Doppler fuze[J]. Acta Armamentarii, 2017, 38(9): 1716-1722(in Chinese). doi: 10.3969/j.issn.1000-1093.2017.09.007
    [11] LIN L, WANG Y, ZHOU H M. Iterative filtering as an alternative algorithm for empirical mode decomposition[J]. Adv Data Sci Adapt Anal, 2009, 1: 543-560. doi: 10.1142/S179353690900028X
    [12] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454(1971): 903-998. doi: 10.1098/rspa.1998.0193
    [13] CICONE A. Iterative filtering as a direct method for the decomposition of nonstationary signals[J]. Numerical Algorithms, 2020, 85(3): 811-827. doi: 10.1007/s11075-019-00838-z
    [14] CICONE A, ZHOU H M. Numerical analysis for iterative filtering with new efficient implementations based on FFT[J]. Numerische Mathematik, 2021, 147(1): 1-28. doi: 10.1007/s00211-020-01165-5
    [15] CICONE A, LIU J F, ZHOU H M. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis[J]. Applied and Computational Harmonic Analysis, 2016, 41(2): 384-411. doi: 10.1016/j.acha.2016.03.001
    [16] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9: 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [17] MA X L, TAO Z M, WANG Y H, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. doi: 10.1016/j.trc.2015.03.014
    [18] ALI M M, BABAR M I, HAMZA M, et al. Industrial financial forecasting using long short-term memory recurrent neural networks[J]. International Journal of Advanced Computer Science and Applications, 2019, 10(4): 14.
    [19] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
    [20] ELSNER J B, TSONIS A A. Singular Spectrum Analysis[M]. Boston: MASpringer US, 1996.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  79
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-21
  • 录用日期:  2023-06-16
  • 网络出版日期:  2023-07-11
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答