留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于融合卷积Transformer的航空发动机故障诊断

赵洪利 杨佳强

孙晶晶, 杨民, 刘静华, 等 . 基于正弦图的计算机断层图像配准[J]. 北京航空航天大学学报, 2011, 37(2): 223-226.
引用本文: 赵洪利,杨佳强. 基于融合卷积Transformer的航空发动机故障诊断[J]. 北京航空航天大学学报,2025,51(4):1117-1126 doi: 10.13700/j.bh.1001-5965.2023.0206
Sun Jingjing, Yang Min, Liu Jinghua, et al. Computerized tomography image registration based on sinogram[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2): 223-226. (in Chinese)
Citation: ZHAO H L,YANG J Q. Aero-engine fault diagnosis based on fusion convolutional Transformer[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1117-1126 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0206

基于融合卷积Transformer的航空发动机故障诊断

doi: 10.13700/j.bh.1001-5965.2023.0206
基金项目: 中央高校基本科研业务费专项资金(3122021049);中国民航大学实验技术创新基金(2021CXJJ90);2022年天津市研究生科研创新项目(2022SKY156);中国交通教育研究会2022—2024年度教育科学研究课题(JT2022YB326)
详细信息
    通讯作者:

    E-mail:henleytrent@163.com

  • 中图分类号: V263.6

Aero-engine fault diagnosis based on fusion convolutional Transformer

Funds: The Fundamental Research Funds for the Central Universities (3122021049); Civil Aviation University of China Experimental Technology Innovation Fund (2021CXJJ90); 2022 Tianjin Postgraduate Research Innovation Project (2022SKY156);China Communications Education Research Association (CCERA) 2022—2024 Educational Research Projects (JT2022YB326)
More Information
  • 摘要:

    航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊断方法。利用自注意力机制提取有用特征,抑制冗余信息,并将最大池化层引入Transformer模型中,进一步降低模型内存消耗及参数量,缓解过拟合现象。采用基于GasTurb建模的涡扇发动机仿真数据集进行验证,结果与Transformer模型和反向传播(BP)神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等传统深度学习模型相比,准确率分别提高了6.552%和28.117%、13.189%、10.29%,证明了所提方法的有效性,可为航空发动机故障诊断提供一定的参考。

     

  • 图 1  融合卷积Transformer模型基本结构

    Figure 1.  Basic structure of fusion convolutional Transformer model

    图 2  多头自注意力机制结构

    Figure 2.  Structure of multi-headed self-attention mechanism

    图 3  航空发动机故障诊断流程

    Figure 3.  Aero-engine fault diagnosis process

    图 4  航空发动机结构简图

    Figure 4.  Schematic of aero-engine structure

    图 5  飞行包线中的典型工作点

    Figure 5.  Typical engine running points in flight envelope

    图 6  t-SNE特征可视化

    Figure 6.  t-SNE feature visualization

    图 7  小波阈值去噪过程

    Figure 7.  Wavelet threshold denoising process

    图 8  混淆矩阵示意图

    Figure 8.  Schematic of confusion matrix

    图 9  不同自注意力头数准确率对比

    Figure 9.  Accuracy comparison of different self-attention heads

    图 10  不同算法训练过程

    Figure 10.  Training processes of different algorithms

    图 11  故障分类混淆矩阵

    Figure 11.  Fault classification confusion matrix

    表  1  部件属性参数

    Table  1.   Property parameters of engine components

    部件属性参数 设定值
    进气道总压恢复系数 0.99
    涵道比 8
    风扇转速/(r·min−1) 4000
    风扇增压比 1.702
    风扇效率/% 0.8780
    LPC转速/(r·min−1) 4000
    LPC增压比 4
    LPC效率/% 0.8700
    HPC转速/(r·min−1) 18000
    HPC增压比 7
    HPC效率/% 0.8500
    燃烧室燃烧效率/% 0.9995
    燃烧室总压恢复系数 0.95
    HPT转速/(r·min−1 18000
    HPT效率/% 0.88
    HPT落压比 2.816
    LPT转速/(r·min−1 4000
    LPT效率/% 0.9000
    LPT落压比 7.166
    下载: 导出CSV

    表  2  航空发动机参数规范

    Table  2.   Parameter specification of aero-engine

    故障部件 健康指数/% 样本数量
    FAN E1, W1∈[−0.5, −5.0] 5152
    LPC E2, W2∈[−0.5, −5.0] 5152
    HPC E3, W3∈[−0.5, −5.0] 5152
    HPT E4∈[−0.5, −5.0],
    W4∈[0.5, 5.0]
    5152
    LPT E5∈[−0.5, −5.0],
    W5∈[0.5, 5.0]
    5152
    下载: 导出CSV

    表  3  模拟参数的测量噪声范围

    Table  3.   Range of measurement noise for simulated parameters

    状态参数 数值
    燃油流量WFF标准噪声值/(kg·s−1 0.0176
    进口总温T2标准噪声值/K ± 2.6
    进口总压P2标准噪声值/% ± 0.5
    风扇出口总温T13标准噪声值/K ± 2.6
    风扇出口总压P13标准噪声值/% ± 0.5
    HPC入口总温T25标准噪声值/K ± 2.6
    HPC入口总压P25标准噪声值/% ± 0.5
    HPC出口总温T3标准噪声值/K ± 3.3
    HPC出口总压P3标准噪声值/% ± 0.5
    LPT入口总温T45标准噪声值/K ± 9.38
    LPT入口总压P45标准噪声值/% ± 0.5
    LPT出口总温T5标准噪声值/K ± 6.64
    LPT出口总压P5标准噪声值/% ± 0.5
    高压转子转速N2标准噪声值/% ± 0.1
    下载: 导出CSV

    表  4  航空发动机各类故障标签

    Table  4.   Various fault labels for aero-engine

    故障种类故障标签
    FAN故障0
    HPC故障1
    HPT故障2
    LPT故障3
    LPC故障4
    下载: 导出CSV

    表  5  不同自注意力头数的对比结果

    Table  5.   Comparison results of different self-attention heads

    h F1 准确率/%
    FAN
    故障
    HPC
    故障
    LPC
    故障
    HPT
    故障
    LPT
    故障
    1 0.97842 0.97183 0.97778 0.98901 0.99636 98.261
    2 0.98208 0.97872 0.98155 0.98901 0.99636 98.551
    7 0.97857 0.98924 0.98901 0.97841 0.97037 98.116
    14 0.97509 0.94891 0.95341 0.97778 0.99275 96.957
    下载: 导出CSV

    表  6  不同编解码器层数的对比结果

    Table  6.   Comparison results of different encoder and decoder layers

    编解码器层数结构 运行时间/s 准确率/% 损失函数值
    5+5 140.02 98.986 3.5434
    5+6 170.99 98.986 3.7686
    5+7 180.64 98.551 5.0131
    6+5 163.97 98.696 4.0963
    6+6 184.38 98.551 3.8259
    6+7 197.45 97.826 5.5352
    7+5 173.84 98.401 5.3243
    7+6 188.31 97.826 7.5168
    7+7 207.74 98.116 6.7694
    下载: 导出CSV

    表  7  不同算法的效果对比

    Table  7.   7Effect comparison of different algorithms

    网络类型 准确率/% 损失函数值
    融合卷积Transformer模型 98.986 3.5434
    Transformer模型 92.464 23.1166
    BP神经网络 70.869 94.6084
    CNN网络 85.797 38.6775
    RNN网络 88.696 42.2614
    下载: 导出CSV

    表  8  本文模型与Transformer模型对比

    Table  8.   Comparison with the proposed model and Transformer model

    模型 准确
    率/%
    池化后
    参数量
    总参
    数量
    内存
    消耗/MB
    运行
    时间/s
    融合卷积Transformer 98.986 35 607466 2391.04 140.02
    Transformer 92.464 140 729123 2426.88 224.59
    下载: 导出CSV
  • [1] LI H H, GOU L F, ZHENG H, et al. Intelligent fault diagnosis of aeroengine sensors using improved pattern gradient spectrum entropy[J]. International Journal of Aerospace Engineering, 2021, 2021(1): 8868875.
    [2] VOLPONI A J. Gas turbine engine health management: past, present, and future trends[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(5): 051201. doi: 10.1115/1.4026126
    [3] BORGUET S, DEWALLEF P, LE’ONARD O. A way to deal with model-plant mismatch for a reliable diagnosis in transient operation[C]//Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2008: 593-602.
    [4] LIU X F, YUAN Y, SHI J, et al. Adaptive modeling of aircraft engine performance degradation model based on the equilibrium manifold and expansion form[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(8): 1246-1272. doi: 10.1177/0954410013488852
    [5] ZHOU H W, HUANG J Q, LU F, et al. Echo state kernel recursive least squares algorithm for machine condition prediction[J]. Mechanical Systems and Signal Processing, 2018, 111: 68-86. doi: 10.1016/j.ymssp.2018.03.047
    [6] 崔建国, 李国庆, 蒋丽英, 等. 基于深度自编码网络的航空发动机故障诊断[J]. 振动测试与诊断, 2021, 41(1): 85-89.

    CUI J G, LI G Q, JIANG L Y, et al. Aero-engine fault diagnosis based on deep self-coding network[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(1): 85-89(in Chinese).
    [7] PU X X, LIU S M, JIANG H D, et al. Sparse Bayesian learning for gas path diagnostics[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(7): 071601. doi: 10.1115/1.4023608
    [8] 徐启华, 师军. 基于支持向量机的航空发动机故障诊断[J]. 航空动力学报, 2005, 20(2): 298-302. doi: 10.3969/j.issn.1000-8055.2005.02.025

    XU Q H, SHI J. Aero-engine fault diagnosis based on support vector machine[J]. Journal of Aerospace Power, 2005, 20(2): 298-302 (in Chinese). doi: 10.3969/j.issn.1000-8055.2005.02.025
    [9] MALHI A, YAN R Q, GAO R X. Prognosis of defect propagation based on recurrent neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(3): 703-711. doi: 10.1109/TIM.2010.2078296
    [10] 刘利军, 雷宇, 余臻. 双向LSTM模型在航空发动机气路故障诊断的应用[J]. 航天控制, 2020, 38(5): 67-72. doi: 10.3969/j.issn.1006-3242.2020.05.011

    LIU L J, LEI Y, YU Z. The application of bidirectional LSTM model in aero-engine gas path fault diagnosis[J]. Aerospace Control, 2020, 38(5): 67-72(in Chinese). doi: 10.3969/j.issn.1006-3242.2020.05.011
    [11] 王奉涛, 薛宇航, 王洪涛, 等. GLT-CNN方法及其在航空发动机中介轴承故障诊断中的应用[J]. 振动工程学报, 2019, 32(6): 1077-1083.

    WANG F T, XUE Y H, WANG H T, et al. GLT-CNN and its application of aero-engine intermediary bearing fault diagnosis[J]. Journal of Vibration Engineering, 2019, 32(6): 1077-1083(in Chinese).
    [12] VASWANI A, SHAZEER N, PARMER N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
    [13] YOO S, KWON O, LEE H. Image-to-graph Transformers for chemical structure recognition[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2022: 3393-3397.
    [14] LU L, LIU C L, LI J Y, et al. Exploring Transformers for large-scale speech recognition[EB/OL]. (2020-08-11)[2023-04-01]. https://arxiv.org/abs/2005.09684v2.
    [15] KIM Y, DENTON C, HOANG L, et al. Structured attention networks[EB/OL]. (2017-02-16)[2023-04-01]. https://arxiv.org/abs/1702.00887v3.
    [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [17] JIMMY L B, JAMIE R K, GENFFREY E H. Layer normalization[EB/OL]. (2016-07-21)[2023-04-01]. https://arxiv.org/abs/1607.06450.
    [18] 黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52(4): 507-522.

    HUANG J Q, WANG Q H, LU F. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 507-522(in Chinese).
    [19] ALOZIE O, LI Y G, PILIDIS P, et al. An integrated principal component analysis, artificial neural network and gas path analysis approach for multi-component fault diagnostics of gas turbine engines[C]//Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021.
    [20] ZHU K G, PENG C, JING C Y, et al. Suppression of motion noise based on a linear-homomorphic filtering algorithm in airborne electromagnetic survey[J]. Geophysical Prospecting, 2021, 69(5): 1102-1115. doi: 10.1111/1365-2478.13078
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  114
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 录用日期:  2023-05-26
  • 网络出版日期:  2023-06-09
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答