留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子机械制动系统关键技术研究进展

赵立金 杨世春 曲婧瑶

邢涛, 张庆春, 李国栋, 等 . 电磁轴承电磁铁单边工作控制方式的实现[J]. 北京航空航天大学学报, 2006, 32(01): 69-73.
引用本文: 赵立金,杨世春,曲婧瑶. 电子机械制动系统关键技术研究进展[J]. 北京航空航天大学学报,2025,51(4):1037-1047 doi: 10.13700/j.bh.1001-5965.2023.0210
Xing Tao, Zhang Qingchun, Li Guodong, et al. Realization of single side working mode of active magnetic bearings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(01): 69-73. (in Chinese)
Citation: ZHAO L J,YANG S C,QU J Y. Research progress of EMB systems key technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1037-1047 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0210

电子机械制动系统关键技术研究进展

doi: 10.13700/j.bh.1001-5965.2023.0210
基金项目: 国家重点研发计划(2022YFB2503105,2021YFB2501700)
详细信息
    通讯作者:

    E-mail:yangshichun@buaa.edu.cn

  • 中图分类号: U463.5

Research progress of EMB systems key technology

Funds: National Key Research and Development Program of China (2022YFB2503105,2021YFB2501700)
More Information
  • 摘要:

    电子机械制动系统(electro-mechanical brake, EMB)是真正意义上的纯线控制动,完全摒弃液压/气压装置,实现人车解耦、更高的响应速度、更精准的制动力控制,是高级别自动驾驶技术的理想制动执行机构,然而由于系统可靠性、功能安全及成本等原因仍未规模量产应用。分析EMB的技术发展现状及典型系统结构,比较线性自增力式和非线性增力式两大技术路线,介绍基于楔形自增力结构的电子楔式制动器(electronic wedge brake,EWB)及混合EMB系统,并探讨其在自动驾驶环境下的适用性。针对EMB系统关键技术,重点研究了系统架构、电控单元、通信架构、失效模式等冗余设计方案,以及无传感器夹紧力估算方法的夹紧力控制技术,并对其后续产业化应用所面临的挑战进行了分析和后续研究展望。

     

  • 图 1  德国博世EMB结构[12]

    Figure 1.  Structure of Bosch EMB[12]

    图 2  德国大陆EMB结构[13]

    Figure 2.  Structure of Continental EMB[13]

    图 3  西门子楔形自增力EWB系统

    Figure 3.  Siemens wedge self EWB system

    图 4  单浮动楔形传动增力构型[10]

    1. 转子;2. 定子;3. 一级太阳轮;4. 一级齿圈;5. 一级行星架;6. 二级行星架;7. 转子制动轴;8. 电磁阀芯及复位弹簧;9. 电磁线圈;10. 转子制动摩擦片;11. 丝杠轴承;12. 丝杠;13、14、15. 滑动滚针排;16. 活塞复位弹簧;17. 弹性密封环。

    Figure 4.  Single floating wedge-shaped force augmentation[10]

    图 5  单电机EWB系统[15]

    Figure 5.  Single motor EWB system[15]

    图 6  EWB和EMB系统实物图

    Figure 6.  Pictures of EWB and EMB system

    图 7  整车制动性能测试结果

    Figure 7.  Vehicle brake performance test results

    图 8  博世双电机冗余构型[26]

    Figure 8.  Bosch dual motor redundant structure[26]

    图 9  万都双电机冗余构型[27]

    Figure 9.  Wando dual motor redundant structure[27]

    图 10  曙光制动EMB冗余构型[28]

    Figure 10.  Akebono brake EMB redundant structure[28]

    图 11  重庆长安双电机双减速机构冗余构型[21]

    1. 制动钳壳体;2. 制动盘;3. 制动片;4. 电机;5. 带传动机构;6. 传动轴;7. 减速机构;8. 行星滚柱丝杠;9. 活塞;10. 减速箱壳体;12. 驻车机构;13. 制动控制器;41. 电机轴;51. 传动带;52. 第1带轮;53. 第2带轮。

    Figure 11.  Chongqing Changan dual motor dual gearbox redundant structure[21]

    图 12  电源系统冗余拓扑方案[23]

    Figure 12.  Power system redundancy topology solutions[23]

    图 13  日立智能制动系统架构[6]

    Figure 13.  Hitachi EMB control architecture[6]

    图 14  瀚德万安 EMB系统控制架构[35]

    Figure 14.  Haldex EMB system control architecture[35]

    图 15  星形总线拓扑[37]

    Figure 15.  Star bus topology[37]

    图 16  环形总线拓扑[37]

    Figure 16.  Ring bus topology[37]

    图 17  重庆长安EMB控制系统方案[38]

    Figure 17.  Chongqing changan EMB control system solution[38]

  • [1] 邓美俊, 孙仁云, 潘湘芸, 等. 汽车电子机械制动系统技术发展分析[J]. 汽车零部件, 2021(9): 103-109.

    DENG M J, SUN R Y, PAN X Y, et al. Research status analysis of automotive electro-mechanical brake system[J]. Automobile Parts, 2021(9): 103-109(in Chinese).
    [2] 雍健羽, 王洪亮, 董金聪, 等. 轻型车辆线控制动技术研究现状及发展趋势综述[J]. 中国汽车, 2022, 32(11): 16-22.

    YONG J Y, WANG H L, DONG J C, et al. Review on the research status and development trend of wire control technology[J]. China Auto, 2022, 32(11): 16-22(in Chinese).
    [3] 牟希东. 面向动力学控制的电子机械制动系统控制策略研究[D]. 长春: 吉林大学, 2021.

    MU X D. Research on control strategy of electro-mechanical braking system oriented to dynamic control[D]. Changchun: Jilin University, 2021(in Chinese).
    [4] 夏利红. 基于EMB的分布式复合制动系统研究[D]. 重庆: 重庆大学, 2019.

    XIA L H. The study on distributed hybrid braking system based on EMB[D]. Chongqing: Chongqing University, 2019(in Chinese).
    [5] 张奇祥, 靳立强, 靳博豪, 等. EMB夹紧力控制与传感器故障诊断研究进展[J]. 汽车工程, 2022, 44(5): 736-746.

    ZHANG Q X, JIN L Q, JIN B H, et al. Research progress of EMB clamping force control and sensor fault diagnosis[J]. Automotive Engineering, 2022, 44(5): 736-746(in Chinese).
    [6] NEZU T, INOUE Y, USUI T. Electronic control technology for chassis subsystems[J]. Hitachi Review, 2022, 71(1): 76-77.
    [7] BROWN S, HOLWEG E. Smart electro-mechanical actuation for drive-by-wire applications[C]//Proceedings of the SAE Technical Paper Series. Warrendale: SAE International, 2004.
    [8] 德尔福集团. 德尔福混合线控制动系统[J]. 汽车与配件, 2004(23): 48.

    Delphi. Delphi hybrid brake-by-wire[J]. Automobile & Parts, 2004(23): 48(in Chinese).
    [9] 高国伟. 面向线控底盘平台的弯道制动力分配控制策略研究[D]. 天津: 天津职业技术师范大学, 2022.

    GAO G W. Research on bend braking force distribution control strategy for wire controlled chassis platform[D]. Tianjin: Tianjin University of Technology and Education , 2022(in Chinese).
    [10] 杨岩松. 基于楔形传动的电子机械线控制动系统的研究与设计[D]. 广州: 华南理工大学, 2020.

    YANG Y S. Research and design of the electro-mechanical brake-by-wire system based on wedge transmission[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
    [11] 宋瑞琦. 商用车电子机械制动系统设计与控制策略研究 [D]. 青岛: 青岛理工大学, 2022.

    SONG R Q. Research on design and control strategy of electro-mechanical braking system of commercial vehicle[D]. Qingdao: Qingdao University of Technology, 2022(in Chinese).
    [12] KELLER F. Electromagnetic wheel brake device: US6536561[P]. 2003-03-25.
    [13] CAO C T, BAUMANN D, HOFMANN D, et al. Self-reinforcing electromechanical disc brake: US8439170[P]. 2013-05-14.
    [14] NEWTON M. Siemens’ wedge brake hits the ice[J]. Automotive Engineering International, 2007, 115(7): 26-30.
    [15] XU F, CHO C. A novel electronic wedge brake based on active disturbance rejection control[J]. Energies, 2022, 15(14): 5096. doi: 10.3390/en15145096
    [16] CHEON J S. Brake by wire system configuration and functions using front EWB (electric wedge brake) and rear EMB (electro-mechanical brake) actuators[C]//Proceedings of the SAE Technical Paper Series. Warrendale: SAE International, 2010.
    [17] CHEON J S, KIM J, JEON J. New brake by wire concept with mechanical backup[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2012, 5(4): 1194-1198. doi: 10.4271/2012-01-1800
    [18] 姚兴娟, 李学佳, 张水清, 等. 一种电子机械制动器: CN218294260U[P]. 2023-01-13.

    YAO X J, LI X J, ZHANG S Q, et al. An electronic mechanical brake: CN218294260U[P]. 2023-01-13(in Chinese).
    [19] 郭锋亮, 叶乙兴, 朱元澄, 等. 一种制动钳总成: CN218063174U[P]. 2022-12-16.

    GUO F L, YE Y X, ZHU Y C, et al. Brake caliper assembly: CN218063174U[P]. 2022-12-16(in Chinese).
    [20] DE MORAIS A E, 许志, 李运动, 等. 多缸同步建压电控制动卡钳: CN217926862U[P]. 2022-11-29.

    DE MORAIS A E, XU Z, LI Y D, et al. Multi-cylinder synchronous built-in piezoelectric control caliper: CN217926862U[P]. 2022-11-29(in Chinese).
    [21] 郑祖雄, 刘磊, 邹佳航. 一种带传动制动钳、制动系统、汽车和设计方法 : CN115507141A[P]. 2022-12-23.

    ZHENG Z X, LIU L, ZOU J H. Belt transmission brake caliper, brake system, automobile and design method: CN115507141A[P]. 2022-12-23(in Chinese).
    [22] LIU H Z, DENG W W, HE R, et al. Fault-tolerant control of brake-by-wire systems based on control allocation[C]//Proceedings of the SAE Technical Paper Series. Warrendale: SAE International, 2016: 923-936.
    [23] SCHRADE S, NOWAK X, VERHAGEN A, et al. Short review of EMB systems related to safety concepts[J]. Actuators, 2022, 11(8): 214. doi: 10.3390/act11080214
    [24] The United Nations Economic Commission for Europe. Uniform provisions concerning the approval of passenger cars with regard to braking: UNECE-R13H[S]. Geneva: The United Nations Economic Commission for Europe, 2015.
    [25] Transport Canada. Hydraulic and electric brake systems: technical standards document No. 105, revision 5[S]. Ottawa: Transport Canada, 2015.
    [26] 张晓坤, 于飞. 电子机械制动器和车辆: CN218177792U[P]. 2022-12-30.

    ZHANG X K, YU F. Electromechanical brake and vehicle: CN218177792U[P]. 2022-12-30(in Chinese).
    [27] 沈暻勋, 张在勋. 电动制动系统及其操作方法: CN115087814A[P]. 2022-09-20.

    SHEN J X, ZHANG Z X. Electric brake system and operating method thereof: CN115087814A[P]. 2022-09-20(in Chinese).
    [28] TAKAHASHI H, TAKAHASHI K. Electric brake: US11523500[P]. 2010-10-05.
    [29] KÖHLER A, BERTSCHE B. An approach of fail operational power supply for next generation vehicle powernet architectures[C]//Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference. Singapore: Research Publishing Services, 2020: 60-67.
    [30] REINHARD W. Electric brake system, particularly electro-mechanical brake system for motor vehicle, has brake circuit, and control unit for implementation of driver braking demand: DE102009046231[P]. 2011-05-11.
    [31] 刘强, 秦宬, 付永泉, 等. 车辆电子机械制动系统和具有其的车辆: CN112550189B[P]. 2021-02-10.

    LIU Q, QIN C, FU Y Q, et al. Vehicle electromechanical brake system and vehicle with same: CN112550189B[P]. 2021-02-10(in Chinese).
    [32] 孙冰. 线控转向系统冗余安全方案设计与测试研究[D]. 长春: 吉林大学, 2022.

    SUN B. Research on design and testing scheme for redundant security of steer-by-wire system[D]. Changchun: Jilin University, 2022(in Chinese).
    [33] PUTZ M H, SEIFERT H, ZACH M, et al. Functional safety (ASIL-D) for an electro mechanical brake[C]//Proceedings of the SAE Technical Paper Series. Warrendale: SAE International, 2016.
    [34] LEE K J, KI Y H, CHEON J S, et al. Approach to functional safety-compliant ECU design for electro-mechanical brake systems[J]. International Journal of Automotive Technology, 2014, 15(2): 325-332. doi: 10.1007/s12239-014-0033-7
    [35] ANDERS N, ANDERS L, DONG X B. A brake system for a vehicle: WO2021139954A1[P]. 2021-07-01.
    [36] 尹荣彬, 陈博, 孔祥明. 智能网联汽车车载以太网技术应用研究[J]. 汽车文摘, 2019(11): 1-5.

    YIN R B, CHEN B, KONG X M. Research and application on Ethernet technologies for connected and intelligent vehicles[J]. Automotive Digest, 2019(11): 1-5(in Chinese).
    [37] Robert Bosch GmbH. Bosch automotive electrics and automotive electronics[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 2014: 70-81.
    [38] 卢天义, 胡浩, 刘佳勇, 等. 一种电子机械制动EMB控制系统及汽车: CN115107722A[P]. 2022-09-27.

    LU T Y, HU H, LIU J Y, et al. Electromechanical braking (EMB) control system and automobile: CN115107722A[P]. 2022-09-27(in Chinese).
    [39] 张帅. 电子机械制动EMB控制策略研究 [D]. 西安: 长安大学, 2021.

    ZHANG S. Research on control strategy of electro-mechanical braking (EMB)[D]. Xi’an: Chang’an University, 2021(in Chinese).
    [40] LI Y J, SHIM T, SHIN D H, et al. Control system design for electromechanical brake system using novel clamping force model and estimator[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8653-8668. doi: 10.1109/TVT.2021.3095900
    [41] WEI Z, XU J, HALIM D. Clamping force control of Sensor-less electro-mechanical brake actuator[C]//Proceedings of the IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2017: 764-769.
    [42] LINE C, MANZIE C, GOOD M C. Electromechanical brake modeling and control: from PI to MPC[J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 446-457. doi: 10.1109/TCST.2007.908200
    [43] DE CASTRO R, TODESCHINI F, ARAÚJO R E, et al. Adaptive-robust friction compensation in a hybrid brake-by-wire actuator[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2014, 228(10): 769-786. doi: 10.1177/0959651813507562
    [44] LEE C F, MANZIE C. Active brake judder attenuation using an electromechanical brake-by-wire system[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2964-2976. doi: 10.1109/TMECH.2016.2571318
    [45] 赵逸云, 林辉, 李兵强. 电子机械制动系统无压力传感器控制策略[J]. 北京航空航天大学学报, 2023, 49(10): 2711-2720.

    ZHAO Y Y, LIN H, LI B Q. Clamping force sensorless control strategies for electromechanical brake systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(10): 2711-2720(in Chinese).
    [46] KWON S, LEE S, LEE J, et al. Accurate state estimation for electro-mechanical brake systems[J]. Journal of Electrical Engineering & Technology, 2019, 14(2): 889-896.
    [47] XU Z, GERADA C. Enhanced force estimation for electromechanical brake actuators in transportation vehicles[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 14329-14339. doi: 10.1109/TPEL.2021.3085996
    [48] FU Y F, HU X H, WANG W R, et al. Simulation and experimental study of a new electromechanical brake with automatic wear adjustment function[J]. International Journal of Automotive Technology, 2020, 21(1): 227-238. doi: 10.1007/s12239-020-0022-y
    [49] 张峻峰, 张俊智, 季园, 等. 一种夹紧力估计系统、夹紧力控制方法及汽车制动系统: CN115431938A[P]. 2022-12-06.

    ZHANG J F, ZAHNG J Z, JI Y, et al. Clamping force estimation system, clamping force control method and automobile braking system: CN115431938A[P]. 2022-12-06(in Chinese).
    [50] 林东焕. 电子机械制动器: CN115771488A[P]. 2023-03-10.

    LIN D H. Electro-hydraulic brake: CN115771488A[P]. 2023-03-10(in Chinese).
    [51] RIVA G, FORMENTIN S, SAVARESI S M. Force estimation in electro-mechanical systems: theory and experiments[C]//Proceedings of the IEEE Conference on Control Technology and Applications. Piscataway: IEEE Press, 2021: 992-997.
    [52] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 乘用车制动系统技术要求及试验方法:GB 21670—2008[S]. 北京:中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspectionand Quarantine, Standardization Administration of China. Technical requirements and testing methods for passenger car braking systems: GB 21670—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [53] 高惠民. 新能源汽车制动系统解析(三)[J]. 汽车维修与保养, 2022(5): 53-56.

    GAO H M. Analysis of new energy vehicle braking system (Ⅲ)[J]. Motor China, 2022(5): 53-56(in Chinese).
    [54] 陈韦纲. 线控液压制动系统制动力分配与控制策略研究[D]. 长春: 吉林大学, 2022.

    CHEN W G. Research on braking force distribution and control of hydraulic brake-by-wire system[D]. Changchun: Jilin University, 2022(in Chinese).
  • 加载中
图(17)
计量
  • 文章访问数:  729
  • HTML全文浏览量:  100
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 录用日期:  2023-05-19
  • 网络出版日期:  2023-07-05
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答