留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合LBP与并行注意力机制的微表情识别方法

李帅超 李明泽 孙嘉傲 卢树华

张剑锋, 刘思永. 半刚性尾涡在冲压空气涡轮性能计算中的应用[J]. 北京航空航天大学学报, 1998, 24(1): 28-30.
引用本文: 李帅超,李明泽,孙嘉傲,等. 融合LBP与并行注意力机制的微表情识别方法[J]. 北京航空航天大学学报,2025,51(4):1404-1414 doi: 10.13700/j.bh.1001-5965.2023.0215
Zhang Jianfeng, Liu Siyong. Application of Semi Rigid Trailing to Ram Air Turbine Performance Calculating[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 28-30. (in Chinese)
Citation: LI S C,LI M Z,SUN J A,et al. A micro expression recognition method integrating LBP and parallel attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1404-1414 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0215

融合LBP与并行注意力机制的微表情识别方法

doi: 10.13700/j.bh.1001-5965.2023.0215
基金项目: 中国人民公安大学安全防范工程双一流创新研究专项(2023SYL08)
详细信息
    通讯作者:

    E-mail:lushuhua@ppsuc.edu.cn

  • 中图分类号: TP391

A micro expression recognition method integrating LBP and parallel attention mechanism

Funds: Double First-Class Innovation Research Project for People’s Public Security University of China (2023SYL08)
More Information
  • 摘要:

    针对面部微表情变化强度弱、背景噪声干扰及特征区分度较小等问题,提出了一种融合LBP与并行注意力机制的微表情识别网络。该网络将RGB图像输入密集连接改进的Shuffle Stage分支提取面部全局特征,增强上下文语义信息关联;将LBP图像输入多尺度分层卷积神经网络构成的局部纹理特征分支,提取细节信息;双分支特征提取后,在网络后端引入并行注意力机制提高特征融合能力,抑制背景干扰,专注微表情特征兴趣区域;所提方法在CASME、CASME II和SMIC等3个公开数据集上进行了测试,识别准确率分别达到了85.18%、74.53%和81.19%;实验结果表明,所提方法有效提高了微表情识别准确率,优于当前诸多先进方法。

     

  • 图 1  融合LBP与并行注意力机制的微表情识别网络结构

    Figure 1.  Structure of micro-expression recognition network integrating LBP and parallel attention mechanism

    图 2  密集连接结构

    Figure 2.  Structure of dense connection convolution layers

    图 3  全局特征提取模块

    Figure 3.  Global feature extraction module

    图 4  全局特征图可视化

    Figure 4.  Visualization of global feature map

    图 5  多尺度分层卷积神经网络

    Figure 5.  Multiscale hierarchical convolutional neural network

    图 6  局部特征图可视化

    Figure 6.  Visualization of local texture feature map

    图 7  基于卷积块注意力机制的特征融合模块

    Figure 7.  Feature fusion module based on convolutional block attention mechanism

    图 8  在SMIC、CASME、CASME II数据集上的混淆矩阵

    Figure 8.  Confusion matrix on SMIC, CASME, CASME II datasets

    图 9  AU与微表情可视化关系示例

    Figure 9.  Example diagram of the visual relationship between AU and micro-expressions

    表  1  CASME数据集识别准确率

    Table  1.   CASME dataset recognition accuracy

    方法 准确率/%
    STCLQP[30] 63.49
    HIGO[31] 57.81
    FHOFO[32] 67.20
    MDMO[8] 68.25
    Macro2Micro[33] 67.72
    STRCN-G[34] 70.90
    AKMNet[35] 75.66
    LEARNet[29] 80.62
    3D Residual Network[22] 81.00
    Meta-MMFNet[36] 69.59
    MFAPL + MK-SVM[28] 79.41
    LCBP-STGCN[27] 81.26
    本文 85.18
    下载: 导出CSV

    表  2  CASME II和SMIC数据集识别准确率

    Table  2.   CASME II and SMIC dataset recognition accuracy

    方法 SMIC
    准确率/%
    CASME II
    准确率/%
    MSMMT[37] 78.30 71.31
    AMAN[38] 79.87 75.40
    KTGSL[39] 72.58 75.64
    Later[40] 73.17 70.68
    SLSTT-Mean[41] 73.17 73.79
    STLBP-IIP[42] 60.37 62.75
    DISTLBP-IIP[42] 63.41 64.78
    3D-CNNs (with transfer learning)[43] 66.30 65.90
    DSSN[44] 63.40 70.78
    SSSN[44] 63.41 71.19
    AKMNet[35] 72.56 67.06
    TSCNN-I[26] 72.74 74.05
    KFC-MER[21] 65.85 72.76
    FR[17] 57.90 62.85
    Knowledge Distillation[45] 76.06 72.61
    本文 81.19 74.53
    下载: 导出CSV

    表  3  CASME、CASME II和SMIC数据集上的消融实验

    Table  3.   Ablation experimental research on CASME, CASME II and SMIC datasets

    方法 CASME
    准确率/%
    CASME II
    准确率/%
    SMIC
    准确率/%
    参数量/M 浮点运算量/G 推理速度/(帧·s−1)
    GFEM 77.50 66.31 73.38 2.59 1.778 111.5
    LTFEM 76.53 62.69 76.90 6.26 3.287 106.3
    GFEM+LTFEM 81.41 66.34 76.47 8.13 4.927 104.5
    GFEM+LTFEM+DEN 83.49 71.19 77.39 8.17 5.073 102.2
    GFEM+LTFEM+CAFFM 82.81 74.67 79.76 8.46 5.165 97.3
    GFEM+LTFEM+DEN+CAFFM 85.18 74.33 81.19 8.97 5.258 95.8
    GFEM+LTFEM+CAFFM-L 84.52 74.52 79.71 8.49 5.140 97.3
    GFEM+LTFEM+DEN+CAFFM-L 84.14 74.55 77.81 8.78 5.232 95.7
    GFEM+LTFEM + CAFFM-G 81.63 72.23 77.76 8.50 5.151 97.5
    GFEM+LTFEM +DEN+CAFFM-G 83.26 74.05 77.52 8.79 5.243 95.8
    下载: 导出CSV

    表  4  CAFFM不同权重比在3个数据集上的准确率

    Table  4.   Accuracy of different weight ratios of CAFFM on 3 datasets

    αβγ CASME
    准确率/%
    CASME II
    准确率/%
    SMIC
    准确率/%
    1∶1∶1 82.82 74.67 80.19
    2∶1∶1 80.78 72.71 80.76
    1∶2∶1 78.37 73.67 79.71
    1∶1∶2 79.56 73.28 79.90
    下载: 导出CSV

    表  5  CAFFM-L不同权重比在3个数据集上的准确率

    Table  5.   Accuracy of different weight ratios of CAFFM-L on 3 datasets

    αβγ CASME
    准确率/%
    CASME II
    准确率/%
    SMIC
    准确率/%
    1∶1∶1 83.53 74.53 79.71
    2∶1∶1 84.15 74.47 78.86
    1∶2∶1 82.96 74.36 78.81
    1∶1∶2 82.44 74.22 77.76
    下载: 导出CSV

    表  6  CAFFM-G不同权重比在3个数据集上的准确率

    Table  6.   Accuracy of different weight ratios of CAFFM-G on 3 datasets

    αβγ CASME
    准确率/%
    CASME II
    准确率/%
    SMIC
    准确率/%
    1∶1∶1 82.96 72.23 77.76
    2∶1∶1 82.96 73.86 78.38
    1∶2∶1 81.63 74.56 79.57
    1∶1∶2 82.44 73.61 80.24
    下载: 导出CSV
  • [1] PORTER S, TEN BRINKE L. Reading between the lies: identifying concealed and falsified emotions in universal facial expressions[J]. Psychological Science, 2008, 19(5): 508-514. doi: 10.1111/j.1467-9280.2008.02116.x
    [2] HAGGARD E A, ISAACS K S. Micromomentary facial expressions as indicators of ego mechanisms in psychotherapy[M]// Methods of Research in Psychotherapy. Boston: Springer US, 1966: 154-165.
    [3] EKMAN P, FRIESEN W V. The repertoire of nonverbal behavior: categories, origins, usage, and coding[J]. Semiotica, 1969, 1(1): 49-98. doi: 10.1515/semi.1969.1.1.49
    [4] FRANK M, HERBASZ M, SINUK K, et al. I see how you feel: Training laypeople and professionals to recognize fleeting emotions[C]//The Annual Meeting of the International Communication Association. New York: Academic Press, 2009: 1-35.
    [5] EKMAN P, FRIESEN W V. Facial action coding system: a technique for the measurement of facial actions[J]. Rivista Di Psichiatria, 1978, 47(2): 126-138.
    [6] OJALA T, PIETIKÄINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59. doi: 10.1016/0031-3203(95)00067-4
    [7] PFISTER T, LI X B, ZHAO G Y, et al. Recognising spontaneous facial micro-expressions[C]// 2011 International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 1449-1456.
    [8] LIU Y J, ZHANG J K, YAN W J, et al. A main directional mean optical flow feature for spontaneous micro-expression recognition[J]. IEEE Transactions on Affective Computing, 2015, 7(4): 299-310.
    [9] WU Q, SHEN X B, FU X L. The machine knows what you are hiding: an automatic micro-expression recognition system[M]// D’MELLO S, GRAESSER A, SCHULLER B, et al. eds. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 152-162.
    [10] MA H Y, AN G Y, WU S J, et al. A Region Histogram of Oriented Optical Flow (RHOOF) feature for apex frame spotting in micro-expression[C]// 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). Piscataway: IEEE Press, 2017: 281-286.
    [11] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 2261-2269.
    [12] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 122-138.
    [13] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 3-19.
    [14] CHENG R, RAZANI R, TAGHAVI E, et al. (AF)2-S3Net: attentive feature fusion with adaptive feature selection for sparse semantic segmentation network[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 12542-12551.
    [15] LIU S H, REN Y S, LI L T, et al. Micro-expression recognition based on SqueezeNet and C3D[J]. Multimedia Systems, 2022, 28(6): 2227-2236. doi: 10.1007/s00530-022-00949-z
    [16] ZHAO S R, TANG H Y, LIU S F, et al. ME-PLAN: a deep prototypical learning with local attention network for dynamic micro-expression recognition[J]. Neural Networks, 2022, 153: 427-443. doi: 10.1016/j.neunet.2022.06.024
    [17] ZHOU L, MAO Q R, HUANG X H, et al. Feature refinement: an expression-specific feature learning and fusion method for micro-expression recognition[J]. Pattern Recognition, 2022, 122: 108275. doi: 10.1016/j.patcog.2021.108275
    [18] LI J T, WANG T, WANG S J. Facial micro-expression recognition based on deep local-holistic network[J]. Applied Sciences, 2022, 12(9): 4643. doi: 10.3390/app12094643
    [19] LI J, JIN K, ZHOU D L, et al. Attention mechanism-based CNN for facial expression recognition[J]. Neurocomputing, 2020, 411: 340-350. doi: 10.1016/j.neucom.2020.06.014
    [20] RODRÍGUEZ P, VELAZQUEZ D, CUCURULL G, et al. Pay attention to the activations: a modular attention mechanism for fine-grained image recognition[J]. IEEE Transactions on Multimedia, 2019, 22(2): 502-514.
    [21] SU Y T, ZHANG J Q, LIU J, et al. Key facial components guided micro-expression recognition based on first & second-order motion[C]// 2021 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE Press, 2021: 1-6.
    [22] GAJJALA V R, REDDY S P T, MUKHERJEE S, et al. MERANet: facial micro-expression recognition using 3D residual attention network[C]// Proceedings of the Twelfth Indian Conference on Computer Vision, Graphics and Image Processing. New York: ACM, 2021: 1-10.
    [23] YAN W J, QI W, LIU Y J, et al. CASME database: a dataset of spontaneous micro-expressions collected from neutralized faces[C]// 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Piscataway: IEEE Press, 2013: 1-7.
    [24] YAN W J, LI X B, WANG S J, et al. CASME II: an improved spontaneous micro-expression database and the baseline evaluation[J]. PLoS One, 2014, 9(1): e86041. doi: 10.1371/journal.pone.0086041
    [25] LI X B, PFISTER T, HUANG X H, et al. A spontaneous micro-expression database: inducement, collection and baseline[C]// 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Piscataway: IEEE Press, 2013: 1-6.
    [26] SONG B L, LI K, ZONG Y, et al. Recognizing spontaneous micro-expression using a three-stream convolutional neural network[J]. IEEE Access, 2019, 7: 184537-184551. doi: 10.1109/ACCESS.2019.2960629
    [27] WANG Y, HAN J F, GUO Z Q. RETRACTED: LCBP-STGCN: a local cube binary pattern spatial temporal graph convolutional network for micro-expression recognition[J]. Journal of Intelligent & Fuzzy Systems, 2023, 44(2): 1601-1611.
    [28] CEN S X, YU Y, YAN G, et al. Multi-task Facial Activity Patterns Learning for micro-expression recognition using Joint Temporal Local Cube Binary Pattern[J]. Signal Processing: Image Communication, 2022, 103: 116616. doi: 10.1016/j.image.2021.116616
    [29] VERMA M, VIPPARTHI S K, SINGH G, et al. LEARNet: Dynamic imaging network for micro expression recognition[J]. IEEE Transactions on Image Processing, 2019, 29: 1618-1627.
    [30] HUANG X H, ZHAO G Y, HONG X P, et al. Spontaneous facial micro-expression analysis using Spatiotemporal Completed Local Quantized Patterns[J]. Neurocomputing, 2016, 175: 564-578. doi: 10.1016/j.neucom.2015.10.096
    [31] LI X B, HONG X P, MOILANEN A, et al. Towards reading hidden emotions: a comparative study of spontaneous micro-expression spotting and recognition methods[J]. IEEE Transactions on Affective Computing, 2017, 9(4): 563-577.
    [32] HAPPY S L, ROUTRAY A. Fuzzy histogram of optical flow orientations for micro-expression recognition[J]. IEEE Transactions on Affective Computing, 2017, 10(3): 394-406.
    [33] PENG M, WU Z, ZHANG Z H, et al. From macro to micro expression recognition: deep learning on small datasets using transfer learning[C]// 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). Piscataway: IEEE Press, 2018: 657-661.
    [34] XIA Z Q, HONG X P, GAO X Y, et al. Spatiotemporal recurrent convolutional networks for recognizing spontaneous micro-expressions[J]. IEEE Transactions on Multimedia, 2019, 22(3): 626-640.
    [35] PENG M, WANG C, GAO Y, et al. Recognizing micro-expression in video clip with adaptive key-frame mining[EB/OL]. arXiv preprint arXiv: 2009.09179, 2020.
    [36] GONG W J, ZHANG Y, WANG W, et al. Meta-MMFNet: meta-learning-based multi-model fusion network for micro-expression recognition[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 20(2): 39.
    [37] WANG F, LI J, QI C, et al. Multi-scale multi-modal micro-expression recognition algorithm based on transformer[EB/OL]. arXiv abs/: 2301.02969, 2023.
    [38] WEI M T, ZHENG W M, ZONG Y, et al. A novel micro-expression recognition approach using attention-based magnification-adaptive networks[C]// ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2022: 2420-2424.
    [39] WEI J S, LU G M, YAN J J, et al. Learning two groups of discriminative features for micro-expression recognition[J]. Neurocomputing, 2022, 479: 22-36. doi: 10.1016/j.neucom.2021.12.088
    [40] HONG J, LEE C, JUNG H. Late fusion-based video transformer for facial micro-expression recognition[J]. Applied Sciences, 2022, 12(3): 1169. doi: 10.3390/app12031169
    [41] ZHANG L F, HONG X P, ARANDJELOVIĆ O, et al. Short and long range relation based spatio-temporal transformer for micro-expression recognition[J]. IEEE Transactions on Affective Computing, 2022, 13(4): 1973-1985. doi: 10.1109/TAFFC.2022.3213509
    [42] HUANG X H, WANG S J, ZHAO G Y, et al. Facial micro-expression recognition using spatiotemporal local binary pattern with integral projection[C]// 2015 IEEE International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2015: 1-9.
    [43] ZHI R C, XU H R, WAN M, et al. Combining 3D convolutional neural networks with transfer learning by supervised pre-training for facial micro-expression recognition[J]. IEICE Transactions on Information and Systems, 2019, 102(5): 1054-1064.
    [44] KHOR H Q, SEE J, LIONG S T, et al. Dual-stream shallow networks for facial micro-expression recognition[C]// 2019 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2019: 36-40.
    [45] SUN B, CAO S M, LI D L, et al. Dynamic micro-expression recognition using knowledge distillation[J]. IEEE Transactions on Affective Computing, 2020, 13(2): 1037-1043.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  78
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 录用日期:  2023-06-30
  • 网络出版日期:  2023-07-13
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答