留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MDAM-GhostCNN的滚动轴承故障诊断方法

郭俊锋 谭宝宏 王智明

张德远, 吴波, 李光军, 等 . 振动车削刀杆的计算机辅助设计与实验研究[J]. 北京航空航天大学学报, 1999, 25(4): 467-470.
引用本文: 郭俊锋,谭宝宏,王智明. 基于MDAM-GhostCNN的滚动轴承故障诊断方法[J]. 北京航空航天大学学报,2025,51(4):1172-1184 doi: 10.13700/j.bh.1001-5965.2023.0224
Zhang Deyuan, Wu Bo, Li Guangjun, et al. Design of Flexural Vibration Holder for Vibration Cutting[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(4): 467-470. (in Chinese)
Citation: GUO J F,TAN B H,WANG Z M. Fault diagnosis method of rolling bearing based on MDAM-GhostCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1172-1184 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0224

基于MDAM-GhostCNN的滚动轴承故障诊断方法

doi: 10.13700/j.bh.1001-5965.2023.0224
基金项目: 国家自然科学基金(51465034)
详细信息
    通讯作者:

    E-mail:1426779121@qq.com

  • 中图分类号: TH133.33

Fault diagnosis method of rolling bearing based on MDAM-GhostCNN

Funds: National Natural Science Foundation of China (51465034)
More Information
  • 摘要:

    针对传统故障诊断方法特征提取不充分、计算复杂及在变工况下识别准确率低的问题,提出一种基于混合域注意力机制(MDAM)-GhostCNN的滚动轴承故障诊断方法。采用马尔可夫转移场(MTF)将轴承振动信号转化为具有时间相关性的二维特征图;利用Ghost卷积计算精简的优点,构造出GhostCNN;设计一种MDAM,使网络从通道和空间2个维度充分捕获特征信息,实现特征通道间相互依赖的同时让网络有效关注特征空间信息。由此,构建出MDAM-GhostCNN模型。将MTF二维特征图输入到MDAM-GhostCNN模型中进行训练并输出诊断结果。采用凯斯西储大学和江南大学(JNU)轴承数据集进行实验验证,并对其数据集进行加噪处理。结果表明:在变工况下,所建模型有着更高的识别准确率、抗噪性能和泛化性能。

     

  • 图 1  特征生成过程

    Figure 1.  Feature generation process

    图 2  改进通道注意力机制

    Figure 2.  Improved channel attention mechanism

    图 3  空间注意力机制

    Figure 3.  Spatial attention mechanism

    图 4  混合域注意力机制结构

    Figure 4.  Mixed domain attention mechanism structure

    图 5  MDAM-GhostCNN故障诊断模型

    Figure 5.  MDAM-GhostCNN fault diagnosis model

    图 6  MDAM-GhostCNN模型故障诊断流程图

    Figure 6.  MDAM-GhostCNN model fault diagnosis flow chart

    图 7  轴承实验装置示意图

    Figure 7.  Schematic diagram of bearing experimental device

    图 8  不同参数对诊断精度的影响

    Figure 8.  Effects of different parameters on diagnostic accuracy

    图 9  CWRU[23]轴承数据集在变负载下不同模型的分类精度

    Figure 9.  Classification accuracy of CWRU[23] bearings data set for different models under variable loads

    图 10  故障分类结果的混淆矩阵

    Figure 10.  Confusion matrix of fault classification results

    图 11  不同模型的信噪比

    Figure 11.  Signal-to-noise ratio of different models

    图 12  模型训练过程可视化

    Figure 12.  Visualization of model training process

    图 13  JNU轴承数据模型训练可视化

    Figure 13.  Visualization of JNU bearing data model training

    图 14  JNU数据集轴承变转速下不同模型的分类精度

    Figure 14.  Classification accuracy of different models in bearing variable working conditions of JNU data set

    图 15  JNU数据集上不同模型的信噪比

    Figure 15.  Signal-to-noise ratio of different models on the JNU dataset

    表  1  MDAM-GhostCNN结构

    Table  1.   MDAM-GhostCNN structure

    特征层 卷积核数量 卷积核大小 输出大小
    输入 (128,128,1)
    卷积层 32 5×5 (128,128,32)
    GN (128,128,32)
    最大池化1 32 2×2 (64,64,32)
    Ghost Conv 1 32 3×3 (64,64,32)
    GN (64,64,32)
    最大池化2 32 2×2 (32,32,32)
    Ghost Conv 2 32 3×3 (32,32,32)
    GN (32,32,32)
    最大池化3 2×2 (16,16,32)
    MDAM (16,16,32)
    全局平均池化 (1,1,32)
    分类器 7 (7)
    下载: 导出CSV

    表  2  CWRU[23]滚动轴承数据集

    Table  2.   CWRU [23]rolling bearing data set

    损伤位置 标签 损伤直径/mm 样本数量
    数据集A 数据集B 数据集C
    训练集 测试集 训练集 测试集 训练集 测试集
    正常 0 0 240 100 240 100 240 100
    内圈 1 0.18 240 100 240 100 240 100
    2 0.36 240 100 240 100 240 100
    外圈 3 0.18 240 100 240 100 240 100
    4 0.36 240 100 240 100 240 100
    滚动体 5 0.18 240 100 240 100 240 100
    6 0.36 240 100 240 100 240 100
    下载: 导出CSV

    表  3  不同模型参数量和训练时间

    Table  3.   Number of Different model parameters and training time

    模型 参数量 训练时间/s
    本文模型 11500 2.84
    MBDS-CNN[26] 149300 3.81
    WKCNN[24] 26900 3.09
    ResNet[25] 84900 3.45
    GhostCNN 700 2.73
    ILeNet-5[27] 40900 3.25
    下载: 导出CSV

    表  4  JNU轴承数据集说明

    Table  4.   JNU rolling bearing data set description

    损伤位置 标签 样本数量
    工况F1 工况F2 工况F3
    训练集 测试集 训练集 测试集 训练集 测试集
    正常 0 240 100 240 100 240 100
    内圈 1 240 100 240 100 240 100
    外圈 2 240 100 240 100 240 100
    滚动体 3 240 100 240 100 240 100
    下载: 导出CSV
  • [1] HAN T, LIU C, YANG W G, et al. Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application[J]. ISA Transactions, 2020, 97: 269-281. doi: 10.1016/j.isatra.2019.08.012
    [2] HE S Y, HU D Y, YU G, et al. Trackside acoustic detection of axle bearing fault using wavelet domain moving beamforming method[J]. Applied Acoustics, 2022, 195: 108851. doi: 10.1016/j.apacoust.2022.108851
    [3] HOU M X, SHI H T. Stator-winding incipient shorted-turn fault detection for motor system in motorized spindle using modified interval observers[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3505716.
    [4] LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. doi: 10.1016/j.ymssp.2018.02.016
    [5] 袁彩艳, 孙洁娣, 温江涛, 等. 多域信息融合结合改进残差密集网络的轴承故障诊断[J]. 振动与冲击, 2022, 41(4): 200-208.

    YUAN C Y, SUN J D, WEN J T, et al. Bearing fault diagnosis based on information fusion and improved residual dense networks[J]. Journal of Vibration and Shock, 2022, 41(4): 200-208(in Chinese).
    [6] HOANG D T, KANG H J. A survey on deep lelarning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335: 327-335. doi: 10.1016/j.neucom.2018.06.078
    [7] SCHOLARPEDIA G E H. Deep belief networks[J]. Scholarpedia the Peer-Reviewed Open-Access Encyclopedia, 2009, 4(5): 5947.
    [8] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. doi: 10.1038/323533a0
    [9] XU Y, LI Z X, WANG S Q, et al. A hybrid deep-learning model for fault diagnosis of rolling bearings[J]. Measurement, 2021, 169: 108502. doi: 10.1016/j.measurement.2020.108502
    [10] ZHANG Z Q, YANG Q Y, ZI Y Y. Multi-scale and multi-pooling sparse filtering: a simple and effective representation learning method for intelligent fault diagnosis[J]. Neurocomputing, 2021, 451: 138-151. doi: 10.1016/j.neucom.2021.04.066
    [11] CHEN Z Y, MAURICIO A, LI W H, et al. A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks[J]. Mechanical Systems and Signal Processing, 2020, 140: 106683. doi: 10.1016/j.ymssp.2020.106683
    [12] XU Z F, LI C, YANG Y. Fault diagnosis of rolling bearing of wind turbines based on the variational mode decomposition and deep convolutional neural networks[J]. Applied Soft Computing, 2020, 95: 106515. doi: 10.1016/j.asoc.2020.106515
    [13] YE M Y, YAN X A, CHEN N, et al. Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network[J]. Applied Acoustics, 2023, 202: 109143.
    [14] 刘俊锋, 俞翔, 万海波, 等. 基于 MFMD 和 Transformer-CNN 的滚动轴承故障诊断方法[J]. 航空动力学报, 2023, 38(6): 1446-1456.

    LIU J F, YU X, WAN H B, et al. Fault diagnosis method of rolling bearing using MFMD and Transformer-CNN[J]. Journal of Aerospace Power, 2023, 38(6): 1446-1456(in Chinese) .
    [15] FU W L, JIANG X H, LI B L, et al. Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique[J]. Measurement Science and Technology, 2023, 34(4): 045005. doi: 10.1088/1361-6501/acabdb
    [16] 金江涛, 许子非, 李春, 等. 基于卷积双向长短期记忆网络与混沌理论的滚动轴承故障诊断[J]. 振动与冲击, 2022, 41(17): 160-169.

    JIN J T, XU Z F, LI C, et al. Fault diagnosis of rolling bearing based on CCNN-BiLSTMN method[J]. Journal of Vibration and Shock, 2022, 41(17): 160-169(in Chinese).
    [17] MAO G, ZHANG Z Z, QIAO B, et al. Fusion domain-adaptation CNN driven by images and vibration signals for fault diagnosis of gearbox cross-working conditions[J]. Entropy, 2022, 24(1): 119. doi: 10.3390/e24010119
    [18] WANG M J, WANG W J, ZHANG X N, et al. A new fault diagnosis of rolling bearing based on Markov transition field and CNN[J]. Entropy, 2022, 24(6): 751. doi: 10.3390/e24060751
    [19] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 1577-1586.
    [20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [21] HUANG Z L, WANG X G, HUANG L C, et al. CCNet: criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 603-612.
    [22] XU G W, LIU M, JIANG Z F, et al. Online fault diagnosis method based on transfer convolutional neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2): 509-520. doi: 10.1109/TIM.2019.2902003
    [23] Case Western Reserve University. Case Western Reserve University bearing data[EB/OL]. (2018-05-22) [2023-04-28]. https://gitcode.com/open-source-toolkit/1cd2d/?utm_source=tools_gitcode&index=bottom&type=card&webUrl.
    [24] SONG X D, CONG Y Y, SONG Y F, et al. A bearing fault diagnosis model based on CNN with wide convolution kernels[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(8): 4041-4056. doi: 10.1007/s12652-021-03177-x
    [25] HAO X Y, ZHENG Y, LU L, et al. Research on intelligent fault diagnosis of rolling bearing based on improved deep residual network[J]. Applied Sciences, 2021, 11(22): 10889. doi: 10.3390/app112210889
    [26] 刘恒畅, 姚德臣, 杨建伟, 等. 基于多分支深度可分离卷积神经网络的滚动轴承故障诊断研究[J]. 振动与冲击, 2021, 40(10): 95-102.

    LIU H C, YAO D C, YANG J W, et al. Fault diagnosis of rolling bearings based on multi-branch deep separable convolutional neural networks[J]. Vibration and Shock, 2021, 40(10): 95-102(in Chinese) .
    [27] 吴晨芳, 杨世锡, 黄海舟, 等. 一种基于改进的LeNet-5模型滚动轴承故障诊断方法研究[J]. 振动与冲击, 2021, 40(12): 55-61.

    WU C F, YANG S X, HUANG H Z, et al. An improved fault diagnosis method of rolling bearings based on LeNet-5[J]. Journal of Vibration and Shock, 2021, 40(12): 55-61(in Chinese).
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  70
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 录用日期:  2023-06-20
  • 网络出版日期:  2023-07-07
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答