Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3种六自由度动力下降凸优化制导方法

王驰 刘伟 高扬

吴豪,刘猛,王浚. 小腔对排气活门快速调压能力的影响[J]. 北京航空航天大学学报,2025,51(4):1245-1254 doi: 10.13700/j.bh.1001-5965.2023.0248
引用本文: 王驰,刘伟,高扬. 3种六自由度动力下降凸优化制导方法[J]. 北京航空航天大学学报,2025,51(4):1292-1303 doi: 10.13700/j.bh.1001-5965.2023.0235
WU H,LIU M,WANG J. Effect of balance chamber on rapid pressure regulation ability of outflow valve[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1245-1254 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0248
Citation: WANG C,LIU W,GAO Y. Three convexification-based methods for six-degree-of-freedom powered descent guidance[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1292-1303 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0235

3种六自由度动力下降凸优化制导方法

doi: 10.13700/j.bh.1001-5965.2023.0235
基金项目: 中国科学院青年创新促进会项目(292020000040)
详细信息
    通讯作者:

    E-mail:liuwei@csu.ac.cn

  • 中图分类号: V448.131;V448.233

Three convexification-based methods for six-degree-of-freedom powered descent guidance

Funds: Youth Innovation Promotion Association CAS (292020000040)
More Information
  • 摘要:

    飞行器动力下降软着陆的一个关键技术在于实时求解六自由度(6-DoF)动力下降制导问题,该问题可以描述为多约束条件下的燃料最省轨迹优化问题。选取飞行时间、时间替代变量、轨迹高度3种自变量建立3种优化模型,将原始轨迹优化问题转化为序列凸优化可解形式进行迭代求解,形成了3种在线制导方法。比较3种制导方法在收敛性、实时性、最优性及求解精度上的差异,结果表明:3种制导方法均能求解六自由度动力下降问题;自变量为飞行时间的制导方法计算时间最短且燃料消耗最少,但需要预先确定动力下降飞行时间;基于其余2类自变量的制导方法能够优化动力下降飞行时间,但均为次优解,且计算时间显著增加;相同离散点数量下3种方法的求解精度相近。若采用序列凸优化作为动力下降在线制导方案,如何确定最优飞行时间、逼近燃料最优解及进一步缩短计算时间等仍有待深入研究。

     

  • 图 1  飞行器本体坐标系与着陆场坐标系示意图

    Figure 1.  Schematic diagram of the vehicle body coordinate system and the landing site coordinate system

    图 2  不同末端时间的仿真结果

    Figure 2.  Simulation results for different terminal times

    图 3  本体系下的推力(控制量与状态量不解耦)

    Figure 3.  Thrust under the body coordinate frame(control and state are coupled)

    图 4  2种自由时间优化对比

    Figure 4.  Comparison of two free-final-time optimizations

    图 5  改变时间归一化参数的仿真结果(以时间替代变量为自变量优化问题)

    Figure 5.  Simulation results of changing the time normalization parameters (Optimisation problem with time substitution variables as independent variables)

    图 6  改变时间归一化参数的仿真结果(以高度为自变量优化问题)

    Figure 6.  The simulation results of changing the time normalization parameters (Optimisation problem with height as independent variables)

    图 7  离散点数量对位置误差的影响

    Figure 7.  Effect of the number of discrete points on the position error

    图 8  离散点数量对姿态角误差的影响

    Figure 8.  Effect of the number of discrete points on the attitude angle error

    图 9  离散点数量对计算时间的影响

    Figure 9.  Effect of the number of discrete points on the computation time

    图 10  离散点数量对迭代次数的影响

    Figure 10.  Effect of the number of discrete points on the number of iterations

    表  1  仿真参数

    Table  1.   Simulation parameters

    参数 数值
    初始质量mwet/kg 65 170
    结构质量mdry/kg 25 600
    圆柱体底面半径R/m 1.85
    圆柱体长底L/m 41.2
    最大推力Tmax/N 845 000
    最小推力Tmin/N 845000×0.4
    比冲Isp/s 310
    质心至推力作用点位置矢量rT/m [2000]
    大气密度ρ/(kg·m−3) 1.225
    阻力系数Cd 1.3
    参考面积S/m2 πr2,r=1.85 m
    下载: 导出CSV

    表  2  状态参数

    Table  2.   State parameters

    状态参数 数值
    初始位置r0/m [500010000]
    初始速度v0/(m·s−1) [100100]
    初始姿态四元数q0 [1000]
    初始姿态角速度ω0/(rad·s−1 [000]
    末端位置rf/m [000]
    末端速度vf/(m·s−1) [100]
    末端姿态四元数qf [1000]
    末端姿态角速度ωf/(rad·s−1 [000]
    路径角γ/(°) 4
    最大姿态角θmax/(°) 30
    最大姿态角速度ωmax/((°)·s−1 5
    最大推力摆角δmax/(°) 20
    下载: 导出CSV

    表  3  固定时间序列凸优化参数

    Table  3.   Fixed time sequential convex optimization parameters

    参数 数值
    时间tf/s 50,51,,58
    归一化距离ls/m 5 000
    归一化时间ts/s 50,51,,58
    归一化推力Ts/N 845000
    离散点个数K 60
    信任域罚函数系数wη 1
    线性化误差罚函数系数wκ 104
    最大迭代次数imax 500
    信任域误差限εη 10−4
    线性化误差限εκ 10−8
    下载: 导出CSV

    表  4  不同末端时间着陆误差

    Table  4.   Landing error for different terminal times

    末端
    时间/s
    位置
    误差/m
    速度
    误差/(m·s−1)
    姿态角
    误差/(°)
    角速度
    误差/((°)·s−1
    50 256.94 19.80 4.06 0.046 2
    51 95.81 7.40 1.52 0.024
    52 55.59 4.29 0.87 0.014 8
    53 45.27 3.46 0.68 0.008 5
    54 41.46 3.11 0.59 0.005 6
    55 38.25 2.83 0.52 0.003 2
    56 35.00 2.56 0.46 0.001 4
    57 34.03 2.46 0.43 0.000 87
    58 34.39 2.43 0.42 0.000 769
    下载: 导出CSV

    表  5  序列凸优化参数(以时间替代变量为自变量)

    Table  5.   Successive convex optimization parameters (with time substitution variables as independent variables)

    参数 数值
    归一化距离ls/m 5 000
    归一化时间ts/s 43
    归一化推力Ts 845000
    离散点个数K 60
    λ罚函数系数wλ 10
    信任域罚函数系数wη 0.1
    线性化误差罚函数系数wκ 104
    最大迭代次数imax 500
    信任域误差限εη 10−4
    线性化误差限εκ 10−8
    下载: 导出CSV

    表  6  序列凸优化参数(以高度为自变量)

    Table  6.   Successive convex optimization parameters(with height as independent variables)

    参数 数值
    归一化距离ls/m 5 000
    归一化时间ts/s 12
    归一化推力Ts 845000
    离散点个数K 60
    信任域罚函数系数wη 1
    线性化误差罚函数系数wκ 104
    最大迭代次数imax 500
    信任域误差限εη 10−4
    线性化误差限εκ 10−8
    下载: 导出CSV

    表  7  自由时间优化末端着陆误差对比

    Table  7.   Comparison of landing errors for free-final-time optimization

    自变量 燃料消耗/kg 位置误差/m 速度误差/(m·s−1) 姿态角误差/(°) 角速度误差/((°)·s−1
    时间替代变量 11185.7 35.1070 2.6270 0.4812 0.0041
    高度 11008.0 39.0043 5.9782 0.47074 0.11541
    下载: 导出CSV

    表  8  计算时间对比

    Table  8.   Comparision of computation time

    优化方法 迭代次数 平均单次
    迭代时间/s
    总时间/s
    固定时间优化(55 s) 4 0.62 2.46
    自由时间优化 4 7.64 30.57
    以高度为自变量优化 50 0.44 21.82
    自由时间优化(*) 1 7.80 2.46+7.80
    以高度为自变量优化(*) 33 0.41 2.46+13.45
     注:带*仿真选取55 s固定时间优化结果作为初值。
    下载: 导出CSV
  • [1] SONG Z Y, WANG C, THEIL S, et al. Survey of autonomous guidance methods for powered planetary landing[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 652-674.
    [2] LIU X F, LU P, PAN B F. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1): 23-40. doi: 10.1007/s42064-017-0003-8
    [3] LU P, LIU X F. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 375-389. doi: 10.2514/1.58436
    [4] TANG G, JIANG F H, LI J F. Fuel-optimal low-thrust trajectory optimization using indirect method and successive convex programming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 2053-2066. doi: 10.1109/TAES.2018.2803558
    [5] 邓雁鹏, 穆荣军, 彭娜, 等. 月面着陆动力下降段最优轨迹序列凸优化方法[J]. 宇航学报, 2022, 43(8): 1029-1039. doi: 10.3873/j.issn.1000-1328.2022.08.005

    DENG Y P, MU R J, PENG N, et al. Sequential convex optimization method for lunar landing during powered descent phase[J]. Journal of Astronautics, 2022, 43(8): 1029-1039(in Chinese). doi: 10.3873/j.issn.1000-1328.2022.08.005
    [6] 徐西宝, 白成超, 陈宇燊, 等. 月/火探测软着陆制导技术发展综述[J]. 宇航学报, 2020, 41(6): 719-729. doi: 10.3873/j.issn.1000-1328.2020.06.009

    XU X B, BAI C C, CHEN Y S, et al. A survey of guidance technology for Moon/Mars soft landing[J]. Journal of Astronautics, 2020, 41(6): 719-729(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.06.009
    [7] HARRIS M W, AÇıKMEŞE B. Maximum divert for planetary landing using convex optimization[J]. Journal of Optimization Theory and Applications, 2014, 162(3): 975-995. doi: 10.1007/s10957-013-0501-7
    [8] BLACKMORE L, ACIKMESE B, SCHARF D P. Minimum-landing-error powered-descent guidance for Mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1161-1171. doi: 10.2514/1.47202
    [9] ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1353-1366. doi: 10.2514/1.27553
    [10] PINSON R, LU P. Rapid generation of optimal asteroid powered descent trajectories via convex optimization[C]//Proceedings of the AAS/AIAA Astrodynamics Specialist Conference. Reston: AIAA, 2015.
    [11] PINSON R M, LU P. Trajectory design employing convex optimization for landing on irregularly shaped asteroids[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(6): 1243-1256. doi: 10.2514/1.G003045
    [12] LIU X F, SHEN Z J, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(2): 227-241. doi: 10.2514/1.G001210
    [13] SCHARF D P, AÇIKMEŞE B, DUERI B, et al. Implementation and experimental demonstration of onboard powered-descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 213-229. doi: 10.2514/1.G000399
    [14] SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2016.
    [15] WANG Z B, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2603-2615. doi: 10.2514/1.G002150
    [16] MAO Y Q, SZMUK M, AÇıKMEŞE B. Successive convexification of non-convex optimal control problems and its convergence properties[C]// Proceedings of the IEEE 55th Conference on Decision and Control. Piscataway: IEEE Press, 2016: 3636-3641.
    [17] LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 750-765. doi: 10.2514/1.62110
    [18] YANG R Q, LIU X F. Fuel-optimal powered descent guidance with free final-time and path constraints[J]. Acta Astronautica, 2020, 172: 70-81. doi: 10.1016/j.actaastro.2020.03.025
    [19] SZMUK M, EREN U, ACIKMESE B. Successive convexification for Mars 6-DoF powered descent landing guidance[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2017.
    [20] SZMUK M, ACIKMESE B. Successive convexification for 6-DoF Mars rocket powered landing with free-final-time [C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2018.
    [21] REYNOLDS T P, SZMUK M, MALYUTA D, et al. Dual quaternion-based powered descent guidance with state-triggered constraints[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(9): 1584-1599. doi: 10.2514/1.G004536
    [22] KAMATH A G, ELANGO P, MCEOWEN S, et al. Customized real-time first-order methods for onboard dual quaternion-based 6-DoF powered-descent guidance[C]//Proceedings of the AIAA SCITECH 2023 Forum. Reston: AIAA, 2023.
    [23] CHEN Y S, YANG G W, WANG L, et al. A fast algorithm for onboard atmospheric powered descent guidance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6112-6123.
    [24] MAO Y Q, DUERI D, SZMUK M, et al. Successive convexification of non-convex optimal control problems with state constraints[J]. IFAC-PapersOnLine, 2017, 50(1): 4063-4069. doi: 10.1016/j.ifacol.2017.08.789
    [25] MALYUTA D, REYNOLDS T, SZMUK M, et al. Discretization performance and accuracy analysis for the rocket powered descent guidance problem[C]//Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
    [26] MATTINGLEY J, BOYD S. CVXGEN: A code generator for embedded convex optimization[J]. Optimization and Engineering, 2012, 13(1): 1-27. doi: 10.1007/s11081-011-9176-9
    [27] TOH K C, TODD M J, TÜTÜNCÜ R H. On the implementation and usage of SDPT3–A Matlab software package for semidefinite-quadratic-linear programming, version 4.0[M]// Handbook on Semidefinite, Conic and Polynomial Optimization. Berlin: Springer, 2011: 715-754.
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  61
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-10
  • 录用日期:  2023-07-21
  • 网络出版日期:  2023-08-14
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答