Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运载火箭发射过程中的最大气动载荷预测方法

程胡华 武帅 姜祝辉 张入财

李勋, 季远, 张德远等 . 基于有限元分析的椭圆振动切削换能器[J]. 北京航空航天大学学报, 2005, 31(02): 153-156.
引用本文: 程胡华,武帅,姜祝辉,等. 运载火箭发射过程中的最大气动载荷预测方法[J]. 北京航空航天大学学报,2025,51(4):1304-1312 doi: 10.13700/j.bh.1001-5965.2023.0237
Li Xun, Ji Yuan, Zhang Deyuanet al. Transducer of the ultrasonic elliptical vibration cutting based on the finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(02): 153-156. (in Chinese)
Citation: CHENG H H,WU S,JIANG Z H,et al. Maximum aerodynamic load prediction method during launching of vehicle launch[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1304-1312 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0237

运载火箭发射过程中的最大气动载荷预测方法

doi: 10.13700/j.bh.1001-5965.2023.0237
详细信息
    通讯作者:

    E-mail:chenghongxi2012@qq.com

  • 中图分类号: V411.8

Maximum aerodynamic load prediction method during launching of vehicle launch

More Information
  • 摘要:

    火箭发射前3 h的最大气动载荷是决定能否按计划发射的重要指标之一,该值与发射时刻的最大气动载荷差异特征研究极少。通过对2014年12月—2019年12月的时间间隔3.5 h内最大气动载荷差异特征进行分析,发现6.29%样本数的最大气动载荷绝对差超过了500 Pa∙rad,主要是由于3.5 h内高空风出现异常增大、异常减小导致的,若未提前发现该变化特征,则可能会影响火箭的飞行安全。针对绝对差超过500 Pa∙rad的样本,通过建模订正可得到更接近发射后0.5 h最大气动载荷值,绝对差由713.08 Pa∙rad减小到398.22 Pa∙rad,相对误差由29.02%减小到16.32%,相关系数由0.27增大到0.71,表明该建模方法有一定的改进作用,有利于提高火箭安全飞行的保障能力。

     

  • 图 1  在3.5 h内,qαmax偏差、相对偏差的变化特征

    Figure 1.  The variation characteristics of qαmax deviation and qαmax relative deviation within 3.5 h

    图 2  qαmax偏差值超过500 Pa∙rad时,火箭发射前3 h、发射后0.5 h的高空风速及其偏差、大气密度及其偏差随高度变化特征

    Figure 2.  When the qαmax deviation value exceeds 500 Pa∙rad, the upper wind speed and its deviation, the atmospheric density and its deviation change with altitude 3 h before launch and 0.5 h after launch

    图 3  qαmax偏差值超过−500 Pa∙rad时,火箭发射前3 h与发射后0.5 h的高空风速及其偏差、大气密度及其偏差随高度变化特征

    Figure 3.  When the qαmax deviation value exceeds −500 Pa∙rad, the upper wind speed and its deviation, the atmospheric density and its deviation change with altitude 3 h before launch and 0.5 h after launch

    图 4  qαmax偏差值超过500 Pa∙rad、超过−500 Pa∙rad时,Vb3hVf0.5h,与Va0.5h之间的偏差和绝对差随高度变化特征

    Figure 4.  When the qαmax deviation exceeds 500 Pa∙rad and exceeds −500 Pa∙rad, the characteristics of deviation and absolute difference change with height betweenVb3h,Vf0.5h and Va0.5h

    图 5  qαmax绝对差值超过500 Pa∙rad时,qαb3hmaxqαf0.5hmaxqαa0.5hmax之间的偏差、绝对差、相对偏差和相对误差的变化特征

    Figure 5.  When the qαmax absolute difference exceeds 500 (Pa∙rad), the variation characteristics of deviation, absolute difference, relative deviation and relative error between qαb3hmax, qαf0.5hmax and qαa0.5hmax

    表  1  qαmax偏差值超过500 Pa∙rad、−500 Pa∙rad时,火箭发射前3 h、发射后0.5 h的大气环境差异特征

    Table  1.   When the qαmax deviation value exceeds 500 Pa∙rad and −500 Pa∙rad, the atmospheric environment difference characteristics of 3 h before rocket launch and 0.5 h after launch

    qαmax偏差值/(Pa∙rad) Vb3h Va0.5h
    数值范围/(m·s−1) 对应高度/km 平均值/(m·s−1) 数值范围/(m·s−1) 对应高度/km 平均值/(m·s−1)
    >500 0.80~45.19 1.50~13.00 24.59 2.00~52.50 1.50~11.30 26.68
    <−500 1.11~54.15 1.50~12.00 30.55 1.67~47.44 1.50~13.50 27.65
    qαmax偏差值/(Pa·rad) 风速偏差 ρb3h
    数值范围/(m·s−1) 对应高度/km 平均值/(m·s−1) 数值范围/(kg·m−3) 对应高度/km 平均值/(kg·m−3)
    >500 −2.30~9.80 5.10~11.10 2.09 0.07~1.04 21.50~1.50 0.51
    <−500 −7.21~2.22 12.00~21.50 −2.90 0.07~1.09 21.50~1.50 0.51
    qαmax偏差值/(Pa·rad) ρa0.5h 大气密度偏差
    数值范围/(kg·m−3) 对应高度/km 平均值/(kg·m−3) 数值范围/(kg·m−3) 对应高度/km 平均值/(kg·m−3)
    >500 0.07~1.04 21.50~1.50 0.51 0.00380.0029 6.50~5.10 −1.2×10−4
    <−500 0.07~1.08 21.50~1.50 0.51 0.00920.0071 3.10~7.90 2.9×10−4
    下载: 导出CSV

    表  2  WRF模式中的参数化方案设计

    Table  2.   Parametric scheme design in WRF model

    参数化方案方案设计
    微物理过程方案WDM 5-class scheme
    长波辐射方案rrtm scheme
    短波辐射方案Goddard short wave
    近地面层方案Monin-Obukhov(Janjic) scheme
    陆面过程方案unified Noah land-surface model
    边界层方案Mellor-Yamada-Janjic TKE scheme
    积云参数化方案Betts-Miller-Janjic scheme
    下载: 导出CSV

    表  3  qαmax偏差值超过500 Pa∙rad、−500 Pa∙rad时,Vb3hVf0.5h,与Va0.5h之间的偏差和绝对差特征

    Table  3.   When the qαmax deviation value exceeds 500 Pa∙rad, −500 Pa∙rad, the deviation between Vb3h, Vf0.5h, and Va0.5h and the absolute difference characteristics

    qαmax偏差值/(Pa∙rad) Vb3h偏差/(m·s−1 Vf0.5h偏差/(m·s−1 Vb3h偏差/(m·s−1 Vf0.5h偏差/(m·s−1
    数值范围 平均值 数值范围 平均值 数值范围 平均值 数值范围 平均值
    >500 −10.57~2.71 −2.61 −6.24~1.87 −0.83 1.14~14.29 5.19 1.13~7.42 3.52
    <−500 −1.28~8.85 3.50 −4.64~5.78 1.34 2.14~10.00 5.17 1.28~6.61 3.33
     注:所有偏差均为与Va 0.5h相比较。
    下载: 导出CSV

    表  4  qαmax绝对差值超过500 Pa∙rad时,qαb3hmaxqαf0.5hmaxqαa0.5hmax之间的数理统计

    Table  4.   When the qαmax absolute difference exceeds500 Pa∙rad, Mathematical statistics between qαb3hmaxqαf0.5hmax and qαa0.5hmax

    参数 数值范围 平均值
    qαb3hmax偏差/(Pa∙rad) 1297.62~924.43 −101.24
    qαb3hmax绝对差/(Pa∙rad) 504.98~1297.62 713.08
    qαb3hmax相对偏差/% −41.27~43.76 0.44
    qαb3hmax相对误差/% 14.15~43.76 29.02
    qαf0.5hmax偏差/(Pa∙rad) −942.95~587.99 −35.95
    qαf0.5hmax绝对差/(Pa∙rad) 131.21~942.95 398.22
    qαf0.5hmax相对偏差/% −29.99~27.84 0.84
    qαf0.5hmax相对误差/% 4.69~29.99 16.32
     注:所有偏差、绝对差、相对偏差、相对误差均为与qαa0.5hmax相比较。
    下载: 导出CSV
  • [1] 李东, 杨云飞, 胡鹏翔, 等. 运载火箭多体动力学建模与仿真技术研究[J]. 宇航学报, 2021, 42(2): 141-149. doi: 10.3873/j.issn.1000-1328.2021.02.001

    LI D, YANG Y F, HU P X, et al. Research on multibody dynamic modeling and simulation technology for launch vehicles[J]. Journal of Astronautics, 2021, 42(2): 141-149(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.02.001
    [2] PIAO S Y, ZHANG Y H. Frequency-domain response prediction of a launch vehicle coupled with new payloads[J]. Journal of Spacecraft and Rockets, 2021, 58(5): 1557-1562. doi: 10.2514/1.A35047
    [3] 李新田, 陈新民, 陈世立, 等. 固体火箭冲压发动机设计点性能优化分析[J]. 北京航空航天大学学报, 2021, 47(10): 1989-1995.

    LI X T, CHEN X M, CHEN S L, et al. Optimal analysis of design point performance of ducted rocket[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1989-1995(in Chinese).
    [4] 吴杰, 张成, 李淼, 等. 基于凸优化和LQR的火箭返回轨迹跟踪制导[J]. 北京航空航天大学学报, 2022, 48(11): 2270-2280.

    WU J, ZHANG C, LI M, et al. Rocket return trajectory tracking guidance based on convex optimization and LQR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2270-2280(in Chinese).
    [5] 王伟龙, 张会强. 预混C2H4/N2O推力室喷注面板热反侵着火现象数值模拟[J]. 清华大学学报(自然科学版), 2020, 60(3): 206-211.

    WANG W L, ZHANG H Q. Numerical simulations of ignition by soak-back heat through the injection panel in a premixed C2H4/N2O thruster[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 206-211(in Chinese).
    [6] WANG Y B, XU M, AN X M, et al. Numerical study on the trajectory of a long-range flexible rocket with large slenderness ratio[J]. Aerospace Science and Technology, 2021, 117(3): 106959.
    [7] 冯瑞, 刘宇, 张章, 等. 火箭整流罩半罩再入过程连续流区气动特性数值研究[J]. 清华大学学报(自然科学版), 2023, 63(3): 414-422.

    FENG R, LIU Y, ZHANG Z, et al. Numerical study on the aerodynamics of a rocket fairing half in the continuum regime of the reentry process[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 414-422(in Chinese).
    [8] 程镇煌. 大型火箭风载试验[J]. 上海航天, 1996, 13(4): 3-9.

    CHENG Z H. Wind load test for large rocket[J]. Aerospace Shanghai (Chinese & English), 1996, 13(4): 3-9(in Chinese).
    [9] 赵人濂, 陈振官, 付维贤. 风切变与运载火箭设计[J]. 宇航学报, 1998, 19(2): 105-108.

    ZHAO R L, CHEN Z G, FU W X. Wind shear and rocket design[J]. Journal of Astronautics, 1998, 19(2): 105-108(in Chinese).
    [10] 余梦伦. CZ-2E火箭高空风弹道修正[J]. 导弹与航天运载技术, 2001, 249(1): 9-15.

    YU M L. CZ-2E ballistic correction for high altitude wind[J]. Missiles and Space Vehicles, 2001, 249(1): 9-15(in Chinese).
    [11] 李效明, 许北辰, 陈存芸. 一种运载火箭减载控制工程方法[J]. 上海航天, 2004, 21(6): 7-9.

    LI X M, XU B C, CHEN C Y. An engineering method on the control of decreasing load for a launch vehicle[J]. Aerospace Shanghai, 2004, 21(6): 7-9(in Chinese).
    [12] 耿光有, 李东. 由火箭一级飞行弹道分析底部力等动力参数[J]. 导弹与航天运载技术, 2014, 335(5): 10-13.

    GENG G Y, LI D. Analysis of dynamic parameters such as base-force for 1st stage of a launch vehicle via the trajectory[J]. Missiles and Space Vehicles, 2014, 335(5): 10-13(in Chinese).
    [13] 程胡华, 王益柏, 蔡其发, 等. 大气密度对运载火箭飞行的max精度影响及建模分析[J]. 宇航学报, 2021, 42(3): 378-389.

    CHENG H H, WANG Y B, CAI Q F, et al. Influence of atmospheric density on max accuracy of launch vehicle flight and modeling analysis[J]. Journal of Astronautics, 2021, 42(3): 378-389(in Chinese).
    [14] 程胡华, 李娟, 肖云清, 等. 风偏差对火箭最大气动载荷精度的影响与分析[J]. 北京航空航天大学学报, 2021, 47(10): 2034-2042.

    CHENG H H, LI J, XIAO Y Q, et al. Influence and analysis of wind deviation on rocket maximum aerodynamic load accuracy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2034-2042(in Chinese).
    [15] 董欣心, 刘莉, 葛佳昊, 等. 捆绑火箭气动载荷分布不确定性分析[J]. 北京航空航天大学学报, 2022, 48(3): 464-472.

    DONG X X, LIU L, GE J H, et al. Uncertainty analysis of aerodynamic load distribution on strap-on launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 464-472(in Chinese).
    [16] 程胡华, 张军军, 王益柏, 等. 火箭最大气动载荷预报精度及建模订正分析[J]. 航天控制, 2023, 41(4): 77-83.

    CHENG H H, ZHANG J J, WANG Y B, et al. Analysis of the precision of the maximum aerodynamic load forecast for rockets and modeling revisions[J]. Aerospace Control, 2023, 41(4): 77-83 (in Chinese).
    [17] 全美兰, 刘海文, 朱玉祥, 等. 高空急流在北京“7.21”暴雨中的动力作用[J]. 气象学报, 2013, 71(6): 1012-1019.

    QUAN M L, LIU H W, ZHU Y X, et al. Study of the dynamic effects of the upper-level jet stream on the Beijing rainstorm of 21 July 2012[J]. Acta Meteorologica Sinica, 2013, 71(6): 1012-1019(in Chinese).
    [18] 孙颖姝, 周玉淑, 王咏青. 一次双高空急流背景下南疆强降水事件的动力过程和水汽源分析[J]. 大气科学, 2019, 43(5): 1041-1054. doi: 10.3878/j.issn.1006-9895.1812.18168

    SUN Y S, ZHOU Y S, WANG Y Q. Analysis of dynamic process and moisture source on a heavy precipitation event in southern Xinjiang associated with the double upper-level jet[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1041-1054(in Chinese). doi: 10.3878/j.issn.1006-9895.1812.18168
    [19] 程胡华, 成巍, 沈洪标, 等. 火箭发射前后3.5 h内高空风差异特征及预报[J]. 应用气象学报, 2022, 33(4): 400-413.

    CHENG H H, CHENG W, SHEN H B, et al. Upper wind difference characteristics and forecast within 3.5 hours before and after rocket launch[J]. Journal of Applied Meteorological Science, 2022, 33(4): 400-413(in Chinese).
    [20] 朱莉, 王曼, 李华宏, 等. 基于WRF模式的云南短时强降水物理量特征[J]. 大气科学学报, 2019, 42(5): 755-768.

    ZHU L, WANG M, LI H H, et al. Analysis of physical quantity features of Yunnan short-time severe rainfall based on WRF model[J]. Transactions of Atmospheric Sciences, 2019, 42(5): 755-768(in Chinese).
    [21] 刘郁珏, 苗世光, 刘磊, 等. 修正WRF次网格地形方案及其对风速模拟的影响[J]. 应用气象学报, 2019, 30(1): 70-81.

    LIU Y J, MIAO S G, LIU L, et al. Effects of a modified sub-grid-scale terrain parameterization scheme on the simulation of low-layer wind over complex terrain[J]. Journal of Applied Meteorological Science, 2019, 30(1): 70-81(in Chinese).
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 录用日期:  2023-06-30
  • 网络出版日期:  2023-08-30
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答