留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于鲁棒最优滑模的非充气轮胎驱动车辆稳定性控制

李田 赵又群 徐涛 沈亚伟 林棻

李田,赵又群,徐涛,等. 基于鲁棒最优滑模的非充气轮胎驱动车辆稳定性控制[J]. 北京航空航天大学学报,2025,51(4):1342-1351 doi: 10.13700/j.bh.1001-5965.2023.0238
引用本文: 李田,赵又群,徐涛,等. 基于鲁棒最优滑模的非充气轮胎驱动车辆稳定性控制[J]. 北京航空航天大学学报,2025,51(4):1342-1351 doi: 10.13700/j.bh.1001-5965.2023.0238
LI T,ZHAO Y Q,XU T,et al. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1342-1351 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0238
Citation: LI T,ZHAO Y Q,XU T,et al. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1342-1351 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0238

基于鲁棒最优滑模的非充气轮胎驱动车辆稳定性控制

doi: 10.13700/j.bh.1001-5965.2023.0238
基金项目: 国家自然科学基金项目(52272397,11672127);中央高校基本科研业务费专项资金资助项目(NP2022408);高机动防暴车辆技术国家工程实验室开放基金项目(B20210017);南京航空航天大学科研与实践创新计划项目(20220211)
详细信息
    通讯作者:

    E-mail:yqzhao@nuaa.edu.cn

  • 中图分类号: U461.6

Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode

Funds: the National Natural Science Foundation of China (52272397,11672127); the Fundamental Research Funds for the Central Universities (NP2022408); the National Engineering Laboratory of High Mobility anti-riot vehicle technology (B20210017); Postgraduate Research & Practice Innovation Program of NUAA (20220211)
More Information
  • 摘要:

    机械弹性电动轮是一种新式非充气轮胎,具有防爆、防胎刺等优点,文章中基于匹配该电动轮的分布式汽车,提出了一种鲁棒最优滑模(ROSM)控制策略,以便提高车辆转向时的横摆稳定性。针对线性二自由度模型,为实现最优控制采用线性二自由度调节器(LQR),输出初始的附加横摆力矩;考虑到实际行驶中车辆状态是复杂的非线性系统,建立包含不确定参数的车辆动力学模型,并在初始最优控制量的基础上设计一种鲁棒积分滑模控制器,该控制器对不确定参数与外部干扰具有良好的鲁棒性,且仍能实现最优控制;通过MATLAB/Simulink和Carsim联合仿真,对控制方法进行仿真验证,结果表明:双移线工况中,ROSM控制下横摆角速度的平均绝对误差(MAE)、均方根误差(RMSE)与LQR控制相比分别下降了63.83%、65.33%;蛇形工况中,其分别降低了58.38%、60.02%。

     

  • 图 1  二自由度车辆动力学模型

    Figure 1.  2 DOF vehicle dynamics model

    图 2  MEEW结构建模

    Figure 2.  MEEW structural model

    图 3  台架试验

    Figure 3.  Experimental equipment

    图 4  MEEW纵向力拟合曲线

    Figure 4.  Longitudinal force fitting curve of MEEW

    图 5  MEEW侧向力拟合曲线

    Figure 5.  Lateral force fitting curve of MEEW

    图 6  机械弹性电动轮接地状态

    Figure 6.  Grounded state of MEEW

    图 7  横摆角速度变化曲线

    Figure 7.  Yaw rate variation curve

    图 8  质心侧偏角变化曲线

    Figure 8.  Slide slip angle variation curve

    图 9  四轮转矩变化(鲁棒最优滑模控制)

    Figure 9.  Four -wheel torque variation (robust optimal sliding mode control)

    图 10  车速变化曲线

    Figure 10.  Speed variation curve

    图 11  “质心侧偏角-质心侧偏角速度”相图

    Figure 11.  ‘Centre-of-mass lateral deflection angle - centre-of-mass lateral deflection angular velocity’ phase Diagrams

    图 12  横摆角速度变化曲线

    Figure 12.  Yaw rate variation curve

    图 13  质心侧偏角变化曲线

    Figure 13.  Slide slip angle variation curve

    图 14  四轮转矩变化(鲁棒最优滑模控制)

    Figure 14.  Four -wheel torque variation (robust optimal sliding mode control)

    图 15  车速变化曲线

    Figure 15.  Speed variation curve

    图 16  “质心侧偏角-质心侧偏角速度”相图

    Figure 16.  ‘Centre-of-mass lateral deflection angle - centre-of-mass lateral deflection angular velocity’ phase Diagrams

    表  1  MEEW参数拟合结果

    Table  1.   Parameter fitting results

    Fz/kN Bx Cx Dx Ex By Cy Dy Ey
    10 4.9477 1.7216 6795.14 0.4541 0.1364 1.2682 8150 0.0988
    15 3.9323 2.1252 10103.66 0.8742 0.1271 1.2682 12200 0.0952
    20 4.8070 1.7390 13495.56 0.4411 0.1116 1.2682 16310 0.0914
    下载: 导出CSV

    表  2  车辆参数

    Table  2.   Vehicle parameters

    参数 数值
    车辆质量 m/kg 1610
    转动惯量 Iz/(kg·m2 ) 2059.2
    质心到前轴距离 a/m 1.05
    质心到后轴距离 b/m 1.61
    轮距 d/m 1.565
    轮胎滚动半径 R/m 0.35
    前轮等效刚度 kf /(N·rad−1 ) 87002
    后轮等效刚度 kr /(N·rad−1 ) 79240
    下载: 导出CSV

    表  3  评估指标对比

    Table  3.   Comparison of evaluation indicators

    工况 $\omega $δMAE $\omega $δRSME $\beta $δMAE $\beta $δRSME
    双移线LQR 1.0161 1.8285 1.0270 1.7139
    双移线ROSM 0.3675 0.6339 0.7070 1.1663
    蛇形LQR 1.4944 2.2791 1.2446 1.7863
    蛇形ROSM 0.6220 0.9111 0.9732 1.3679
    下载: 导出CSV
  • [1] 赵又群. 非充气机械弹性安全车轮理论与方法[M]. 北京: 科学出版社, 2020: 12-28.

    ZHAO Y Q. Theory and method for non-pneumatic mechanical elastic safety wheel[M]. Beijing: Science Press, 2020: 12-28 (in Chinese).
    [2] DENG Y J, ZHAO Y Q, XU H, et al. Finite element modeling of interaction between non-pneumatic mechanical elastic wheel and soil[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(13): 3293-3304. doi: 10.1177/0954407018821555
    [3] 张陈曦, 赵又群, 冯世林, 等. 伪刚体-柔体耦合的新式免充气轮胎刚度分析[J]. 中国机械工程, 2021, 32(9): 1051-1060,1072.

    ZHANG C X, ZHAO Y Q, FENG S L, et al. Stiffness analysis of new type non-pneumatic tires based on pseudo-rigid-flexible body coupling model[J]. China Mechanical Engineering, 2021, 32(9): 1051-1060,1072(in Chinese).
    [4] 张晨, 赵又群, 郑鑫, 等. 随机载荷下机械弹性车轮的热力耦合耐久性研究[J]. 中国机械工程, 2021, 32(14): 1669-1676.

    ZHANG C, ZHAO Y Q, ZHENG X, et al. Study on thermal coupling durability of mechanical elastic wheels under random loads[J]. China Mechanical Engineering, 2021, 32(14): 1669-1676(in Chinese).
    [5] WANG Q G, ZHUANG Y, WEI J N, et al. A driver model–based direct yaw moment controller for in-wheel motor electric vehicles[J]. Advances in Mechanical Engineering, 2019, 11(9): 1687814019877319.
    [6] GAN L. Study on yaw moment control for electric vehicle with four-wheel in-wheel motor based on fuzzy PI control[J]. Machinery Design & Manufacture, 2015, 7: 103-107.
    [7] ASIABAR A N, KAZEMI R. A direct yaw moment controller for a four in-wheel motor drive electric vehicle using adaptive sliding mode control[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 233(3): 549-567. doi: 10.1177/1464419318807700
    [8] 段敏, 孙小松, 张博涵. 基于模型预测控制与离散线性二次型调节器的智能车横纵解耦跟踪控制[J]. 汽车技术, 2022(8): 38-46.

    DUAN M, SUN X S, ZHANG B H. Horizontal and vertical decoupling tracking control based on MPC and DLQR[J]. Automobile Technology, 2022(8): 38-46(in Chinese).
    [9] LIU D Y, HUANG S, WU S, et al. Direct yaw-moment control of electric vehicle with in-wheel motor drive system[J]. International Journal of Automotive Technology, 2020, 21(4): 1013-1028. doi: 10.1007/s12239-020-0096-6
    [10] 林棻, 蔡亦璋, 赵又群, 等. 匹配机械弹性车轮的分布式驱动电动汽车稳定性控制[J]. 机械工程学报, 2022, 58(8): 236-243. doi: 10.3901/JME.2022.08.236

    LIN F, CAI Y Z, ZHAO Y Q, et al. Lateral stability control of distributed drive electric vehicle with mechanical elastic wheel[J]. Journal of Mechanical Engineering, 2022, 58(8): 236-243(in Chinese). doi: 10.3901/JME.2022.08.236
    [11] ZHU J J, WANG Z P, ZHANG L, et al. Braking/steering coordination control for in-wheel motor drive electric vehicles based on nonlinear model predictive control[J]. Mechanism and Machine Theory, 2019, 142: 103586. doi: 10.1016/j.mechmachtheory.2019.103586
    [12] YAN Z P, WANG M, XU J. Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics[J]. Ocean Engineering, 2019, 173: 802-809.
    [13] RANGEL M A G, MANZANILLA A, SUAREZ A E Z, et al. Adaptive non-singular terminal sliding mode control for an unmanned underwater vehicle: real-time experiments[J]. International Journal of Control, Automation and Systems, 2020, 18(3): 615-628. doi: 10.1007/s12555-019-0674-4
    [14] NORSAHPERI N M H, DANAPALASINGAM K A. An improved optimal integral sliding mode control for uncertain robotic manipulators with reduced tracking error, chattering, and energy consumption[J]. Mechanical Systems and Signal Processing, 2020, 142: 106747. doi: 10.1016/j.ymssp.2020.106747
    [15] XU T, ZHAO Y Q, DENG H F, et al. Integrated optimal control of distributed in-wheel motor drive electric vehicle in consideration of the stability and economy[J]. Energy, 2023, 282: 128990. doi: 10.1016/j.energy.2023.128990
    [16] 丛森森, 高峰, 许述财. 基于动态稳定域的车辆横纵向稳定性协同控制[J]. 汽车工程, 2022, 44(6): 900-908.

    CONG S S, GAO F, XU S C. Cooperative control of vehicle lateral and longitudinal stability based on dynamic stability region[J]. Automotive Engineering, 2022, 44(6): 900-908(in Chinese).
    [17] 梁宝钰, 汪怡平, 刘珣, 等. 基于滑模理论的高速车辆侧风稳定性控制研究[J]. 汽车工程, 2022, 44(1): 123-130.

    LIANG B Y, WANG Y P, LIU X, et al. Study on crosswind stability control of high-speed vehicle based on sliding mode theory[J]. Automotive Engineering, 2022, 44(1): 123-130(in Chinese).
    [18] 陈特, 徐兴, 蔡英凤, 等. 基于状态估计的无人车前轮转角与横摆稳定协调控制[J]. 北京理工大学学报, 2021, 41(10): 1050-1057.

    CHEN T, XU X, CAI Y F, et al. Coordinated control of front-wheel steering angle and yaw stability for unmanned ground vehicle based on state estimation[J]. Transactions of Beijing Institute of Technology, 2021, 41(10): 1050-1057(in Chinese).
    [19] BAI R, WANG H B. Robust optimal control for the vehicle suspension system with uncertainties[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9263-9273. doi: 10.1109/TCYB.2021.3052816
    [20] DENG H F, ZHAO Y Q, FENG S L, et al. Torque vectoring algorithm based on mechanical elastic electric wheels with consideration of the stability and economy[J]. Energy, 2021, 219: 119643. doi: 10.1016/j.energy.2020.119643
    [21] PACEJKA H. Tire and vehicle dynamics[M]. Amsterdam: Elsevier, 2005: 27-29.
    [22] 龙文, 刘豪. 车辆稳定性控制系统LQR算法设计[J]. 汽车实用技术, 2021, 46(23): 76-79,110.

    LONG W, LIU H. Design of vehicle system dynamics control algorithm based on LQR method[J]. Automobile Applied Technology, 2021, 46(23): 76-79,110(in Chinese).
    [23] 郑鑫, 赵又群, 王秋伟, 等. 匹配机械弹性车轮的电子稳定控制器参数分析[J]. 中国机械工程, 2020, 31(23): 2883-2890.

    ZHENG X, ZHAO Y Q, WANG Q W, et al. Parameter analysis of electronic stability controller matching mechanical elastic wheels[J]. China Mechanical Engineering, 2020, 31(23): 2883-2890(in Chinese).
    [24] ALI MASOOD CHEEMA M, FLETCHER J E, FARSHADNIA M, et al. Sliding mode based combined speed and direct thrust force control of linear permanent magnet synchronous motors with first-order plus integral sliding condition[J]. IEEE Transactions on Power Electronics, 2018, 34(3): 2526-2538.
    [25] 王文伟, 赵一凡, 张伟, 等. 多轴轮边驱动铰接客车的横摆稳定性控制策略[J]. 机械工程学报, 2020, 56(14): 161-172. doi: 10.3901/JME.2020.14.161

    WANG W W, ZHAO Y F, ZHANG W, et al. Yaw stability control strategy of multi-wheel independent electric articulated bus[J]. Journal of Mechanical Engineering, 2020, 56(14): 161-172(in Chinese). doi: 10.3901/JME.2020.14.161
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  43
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 录用日期:  2023-09-25
  • 网络出版日期:  2023-10-11
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答