Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于用户调度的多无人机辅助通信系统资源优化

唐菁敏 黄嘉琪 王炳文 宋耀莲 虞贵财

盛 蔚, 谭丽伟. MGNC系统实时快速组合导航新算法[J]. 北京航空航天大学学报, 2009, 35(6): 657-660.
引用本文: 唐菁敏,黄嘉琪,王炳文,等. 基于用户调度的多无人机辅助通信系统资源优化[J]. 北京航空航天大学学报,2025,51(4):1143-1151 doi: 10.13700/j.bh.1001-5965.2023.0241
Sheng Wei, Tan Liwei. Fast data fusion method for MGNC integrated navigation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 657-660. (in Chinese)
Citation: TANG J M,HUANG J Q,WANG B W,et al. Resource optimization of multi UAV assisted communication system based on user scheduling[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1143-1151 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0241

基于用户调度的多无人机辅助通信系统资源优化

doi: 10.13700/j.bh.1001-5965.2023.0241
基金项目: 国家自然科学基金(62261056)
详细信息
    通讯作者:

    E-mail:1540600368@qq.com

  • 中图分类号: TN929.5

Resource optimization of multi UAV assisted communication system based on user scheduling

Funds: National Natural Science Foundation of China (62261056)
More Information
  • 摘要:

    为提高多用户移动通信下行无线传输系统的传输速率,提出一种基于用户调度和轨迹优化的多无人机(UAV)辅助通信系统资源优化算法。所提算法在满足用户调度、无人机总能耗和用户服务质量要求等约束条件下,以多用户总吞吐量最大化为准则建立优化问题。为解决该非凸问题,通过块坐标下降(BCD)法将原非凸问题分解成3个易于处理的非凸子问题,并通过引入松弛变量、一阶泰勒表达式、连续凸近似(SCA)等方法对子问题转换求解后交替迭代优化,得出原非凸问题的近似次优解。仿真结果表明:所提算法能有效地提高系统总吞吐量,并且在单、多无人机通信系统下均具有良好的收敛性。

     

  • 图 1  多无人机通信系统

    Figure 1.  Multiple UAV communication system

    图 2  UAV飞行轨迹

    Figure 2.  UAV flight trajectory

    图 3  3种波束成形方法的吞吐量对比

    Figure 3.  Comparison of throughput of three beamforming methods

    图 4  单、双无人机通信系统迭代次数与总吞吐量的关系

    Figure 4.  Relationship between iteration times and total throughput of single and dual UAV communication systems

    图 5  单、多无人机通信系统在不同飞行周期下的能耗关系

    Figure 5.  Energy consumption relationship of single and dual unmanned aerial vehicle communication systems under different flight cycles

    图 6  多无人机通信系统在不同飞行周期下的总吞吐量

    Figure 6.  Total throughput of multiple unmanned aerial vehicle communication systems under different flight cycles

    图 7  多无人机通信系统用户数量与系统吞吐量的关系

    Figure 7.  Relationship between the number of users and system throughput in multi-UAV communication systems

    表  1  仿真参数

    Table  1.   Simulation parameters

    c1 c2 转子的叶尖速度Utip/(m·s−1) 机身阻力比d0 平均转子速度vm/(m·s−1) 空气密度ρ/(kg·m−3) 转子密度/103(kg·m−3) 转子盘面积A/m2
    60 81.5 120 0.6 4.03 1.225 1.5 0.603
    下载: 导出CSV
  • [1] 张海君, 陈安琪, 李亚博, 等. 6G移动网络关键技术[J]. 通信学报, 2022, 43(7): 189-202.

    ZHANG H J, CHEN A Q , LI Y B, et al. Key technologies of 6G mobile network[J]. Journal on Communications, 2020, 43(7): 189-202(in Chinese).
    [2] WANG M Y, LIN Y, TIAN Q, et al. Transfer learning promotes 6G wireless communications: recent advances and future challenges[J]. IEEE Transactions on Reliability, 2021, 70(2): 790-807. doi: 10.1109/TR.2021.3062045
    [3] WANG B W, SUN Y J, SUN Z, et al. UAV-assisted emergency communications in social IoT: a dynamic hypergraph coloring approach[J]. IEEE Internet of Things Journal, 2020, 7(8): 7663-7677. doi: 10.1109/JIOT.2020.2988445
    [4] ZENG F Z, HU Z Z, XIAO Z, et al. Resource allocation and trajectory optimization for QoE provisioning in energy-efficient UAV-enabled wireless networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7634-7647. doi: 10.1109/TVT.2020.2986776
    [5] ALZENAD M, EL-KEYI A, YANIKOMEROGLU H. 3-D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements[J]. IEEE Wireless Communications Letters, 2018, 7(1): 38-41. doi: 10.1109/LWC.2017.2752161
    [6] XIAO Z Y, DONG H, BAI L, et al. Unmanned aerial vehicle base station (UAV-BS) deployment with millimeter-wave beamforming[J]. IEEE Internet of Things Journal, 2020, 7(2): 1336-1349. doi: 10.1109/JIOT.2019.2954620
    [7] XU J, ZENG Y, ZHANG R. UAV-enabled wireless power transfer: trajectory design and energy optimization[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5092-5106. doi: 10.1109/TWC.2018.2838134
    [8] WU Q Q, ZENG Y, ZHANG R. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109-2121. doi: 10.1109/TWC.2017.2789293
    [9] 张广驰, 陈娇, 崔苗, 等. 无人机交替中继通信及其轨迹优化和功率分配研究[J]. 电子与信息学报, 2021, 43(12): 3554-3562. doi: 10.11999/JEIT200684

    ZHANG G C, CHEN J, CUI M, et al. Trajectory optimization and power allocation for UAV alternate relay communications[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3554-3562(in Chinese). doi: 10.11999/JEIT200684
    [10] WANG H C, REN G C, CHEN J, et al. Unmanned aerial vehicle-aided communications: joint transmit power and trajectory optimization[J]. IEEE Wireless Communications Letters, 2018, 7(4): 522-525. doi: 10.1109/LWC.2018.2792435
    [11] 张涛, 张君, 唐洪莹, 等. 无人机辅助无线供电通信网络节能通信[J]. 传感器与微系统, 2021, 40(12): 44-48.

    ZHANG T, ZHANG J, TANG H Y, et al. Energy minimization communication in UAV-aided wireless powered communication network[J]. Transducer and Microsystem Technologies, 2021, 40(12): 44-48(in Chinese).
    [12] GUO W, ZHANG W L, WANG Y C, et al. Joint attitude and power optimization for UAV-aided downlink communications[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 12437-12442. doi: 10.1109/TVT.2019.2948762
    [13] SONG Q H, ZHENG F C, ZENG Y, et al. Joint beamforming and power allocation for UAV-enabled full-duplex relay[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1657-1671. doi: 10.1109/TVT.2018.2889349
    [14] LIN N, FAN Y B, ZHAO L, et al. GREEN: a global energy efficiency maximization strategy for multi-UAV enabled communication systems[C]//Proceedings of the IEEE Transactions on Mobile Computing. Piscataway: IEEE Press, 2023: 7104-7120.
    [15] ZHANG T K, XU Y, LOO J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5505-5516. doi: 10.1109/TII.2019.2948406
    [16] RAZAVIYAYN M. Successive convex approximation: analysis and applications[D]. Minnesota: University of Minnesota, 2014.
    [17] BOYD S P, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  65
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 录用日期:  2023-07-28
  • 网络出版日期:  2023-09-07
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答