留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小腔对排气活门快速调压能力的影响

吴豪 刘猛 王浚

吴豪,刘猛,王浚. 小腔对排气活门快速调压能力的影响[J]. 北京航空航天大学学报,2025,51(4):1245-1254 doi: 10.13700/j.bh.1001-5965.2023.0248
引用本文: 吴豪,刘猛,王浚. 小腔对排气活门快速调压能力的影响[J]. 北京航空航天大学学报,2025,51(4):1245-1254 doi: 10.13700/j.bh.1001-5965.2023.0248
WU H,LIU M,WANG J. Effect of balance chamber on rapid pressure regulation ability of outflow valve[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1245-1254 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0248
Citation: WU H,LIU M,WANG J. Effect of balance chamber on rapid pressure regulation ability of outflow valve[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1245-1254 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0248

小腔对排气活门快速调压能力的影响

doi: 10.13700/j.bh.1001-5965.2023.0248
详细信息
    通讯作者:

    E-mail:liumeng@buaa.edu.cn

  • 中图分类号: V245.4

Effect of balance chamber on rapid pressure regulation ability of outflow valve

More Information
  • 摘要:

    飞机座舱进气流量冲击情况下,气动式座舱压力调节系统(PCPCS)可能由于动态调节速度不足而导致座舱压力尖峰,进而出现“压耳”问题。基于此,对PCPCS的工作原理开展分析,指出小腔可能对排气活门的快速运动产生阻碍。建立PCPCS的动力学模型,描述排气活门中控制腔(A腔)和小腔(B腔)的工作状态;开展PCPCS在座舱进气流量冲击下的动态工作仿真,定量展示排气活门的动态工作特征和活门芯的受力变化;讨论小腔定径孔直径、小腔顶部直径、小膜片直径对排气活门应对座舱进气流量冲击的影响。仿真结果表明:适当增大小腔定径孔直径有助于提升排气活门响应速度,小腔顶部直径对排气活门运动速度没有显著影响,减小小膜片直径对排气活门响应速度的提升较为显著。

     

  • 图 1  飞机气动式座舱压力调节系统

    Figure 1.  PCPCS of aircraft

    图 2  排气活门

    Figure 2.  Outflow valve

    图 3  排气活门拆解图

    Figure 3.  Disassembly of outflow valve

    图 4  活门芯底部部分装配零件

    Figure 4.  Part of assembly parts at bottom of poppet

    图 5  小腔充气示意图

    Figure 5.  Balance chamber inflation

    图 6  指定座舱进气流量时的计算流程

    Figure 6.  Calculation process when specifying cabin inflow

    图 7  座舱进气流量冲击

    Figure 7.  Cabin inflow impact

    图 8  座舱进气流量冲击下的座舱压力变化率

    Figure 8.  Change rate of cabin pressure under cabin inflow impact

    图 9  座舱进气流量阶跃下的排气活门及座舱状态变化

    Figure 9.  State changes of outflow valve and cabin under cabin inflow step

    图 10  座舱进气流量阶跃过程中活门芯的受力变化

    Figure 10.  Force changes of poppet during cabin inflow step process

    图 11  不同B腔定径孔直径对应的排气活门动态特征

    Figure 11.  Dynamic characteristics of outflow valve corresponding to different metering hole diameters of balance chamber

    图 12  不同B腔顶部直径对应的稳态活门开度和稳定座舱压力

    Figure 12.  Steady state opening and cabin pressure corresponding to different top diameters of balance chamber

    图 13  不同B腔顶部直径对应的排气活门动态特征

    Figure 13.  Dynamic characteristics of outflow valve corresponding to different top diameters of balance chamber

    图 14  不同小膜片直径对应的稳态活门开度和稳定座舱压力

    Figure 14.  Steady state opening and cabin pressure corresponding to different diameters of balance diaphragm

    图 15  不同小膜片直径对应的排气活门动态特征

    Figure 15.  Dynamic characteristics of outflow valve corresponding to different diameters of balance diaphragm

  • [1] 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004.

    SHOU R Z, HE H S. Spacecraft optimal control theory and method[M]. Beijing: Beihang University Press, 2004(in Chinese).
    [2] FISCHER R A. Pneumatic valve: US2672085A[P]. 1954-03-16.
    [3] JENSEN R W. Safety valve: US2672086A[P]. 1954-03-16.
    [4] FISCHER R A, KEMPER J M. Dual differential pressure regulating control: US2900890A[P]. 1959-08-25.
    [5] FISCHER R A. Pressure regulating mechanism: US2986990A[P]. 1961-06-06.
    [6] BURGESS G A, TAYLOR P J. Pressure control system: US3974752A[P]. 1976-08-17.
    [7] MAAS B N. Pressure regulating mechanism: US2883920A[P]. 1959-04-28.
    [8] JR ANDRESEN J H. Aircraft cabin pressurization system having controlled rate of pressure change: US3450020A[P]. 1969-06-17.
    [9] TAYLOR P J. Cabin pressure control systems for general aviation aircraft[J]. SAE Transactions, 1980, 89: 2124-2135.
    [10] 孙丽蓉, 郑丽, 李钧. 民机座舱负压差安全释压功能试飞研究[J]. 民用飞机设计与研究, 2019(1): 49-52.

    SUN L R, ZHENG L, LI J. Research on cabin negative differential pressure relief test of civil aircraft[J]. Civil Aircraft Design & Research, 2019(1): 49-52(in Chinese).
    [11] WHITNEY T J, LUI T L. Aircraft cabin multi-differential pressure control system: US7066808[P]. 2006-06-27.
    [12] HORNER D, ARTHURS T R, ARMSTRONG B. Poppet valve for cabin pressure control systems: US8382035[P]. 2013-02-26.
    [13] Aeronautics-Guide. Control of cabin pressure-aircraft pressurization systems (Part 3) [EB/OL]. (2017-05-01) [2023-05-11]. https://www.aircraftsystemstech.com/2017/05/control-of-aircraft-cabin-pressure.html.
    [14] 北京航空学院五零五教研室. 座舱压力调节器原理[M]. 北京: 北京航空学院五〇五教研室, 1974.

    Teaching and Research Office of Beijing Institute of Aeronautics and Astronautics. Principle of cabin pressure regulator[M]. Beijing: 505 Teaching and Research Office of Beijing Institute of Aeronautics and Astronautics, 1974(in Chinese).
    [15] 王浚, 徐杨禾. 飞机座舱空气参数控制[M]. 北京: 国防工业出版社, 1980.

    WANG J, XU Y H. Aircraft cabin air parameter control[M]. Beijing: National Defense Industry Press, 1980(in Chinese).
    [16] 徐扬禾, 孙长祝, 朱东明. 带放大器的气动式座舱压力调节器动态特性计算和分析[J]. 北京航空学院学报, 1983, 9(3): 41-49.

    XU Y H, SUN C Z, ZHU D M. Calculatio and analysis of the dynamic characteristic for pneumatic cabin pressure regulator with an amplifier[J]. Journal of Beijing University of Aeronautics and Astronautics, 1983, 9(3): 41-49(in Chinese).
    [17] 成杰, 董鹏生. 两种座舱压力控制系统的对比分析[J]. 飞机工程, 2005(4): 42-44.

    CHENG J, DONG P S. The comparison and analysis of two cabin pressure control system[J]. Aircraft Engineering, 2005(4): 42-44(in Chinese).
    [18] 霍昱旭, 李玉忍, 宋颖慧. 飞机座舱压力气动调节系统的建模与仿真[J]. 计算机仿真, 2014, 31(1): 36-40. doi: 10.3969/j.issn.1006-9348.2014.01.009

    HUO Y X, LI Y R, SONG Y H. Modeling and simulation of aircraft cabin pressure’s pneumatic regulator system[J]. Computer Simulation, 2014, 31(1): 36-40(in Chinese). doi: 10.3969/j.issn.1006-9348.2014.01.009
    [19] 魏晓永. 飞机座舱压力调节系统仿真研究[D]. 南京: 南京航空航天大学, 2012.

    WEI X Y. Research on key technologies and optimal design of pneumatic cabin pressure regulation system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [20] 郑新华. 气动式座舱压力调节系统关键技术研究与优化设计[D]: 西安: 西北工业大学, 2016.

    ZHENG X H. Key technology and optimization of pneumatic cabin pressure regulating system[D]. Xi’an: Northwestern Polytechnical University, 2016(in Chinese).
    [21] ZHENG Y G, LIU M, ZHUANG J J, et al. A more precise modeling method for pneumatic cabin pressure control system considering the ambient environmental impacts[J]. International Journal of Aerospace Engineering, 2022, 2022: 2109994.
    [22] BEAR S H. Sinus symptoms originating from modern flight[J]. The Laryngoscope, 1958, 68(6): 1057-1068. doi: 10.1288/00005537-195806000-00008
    [23] 朱治平, 于庆祥, 郜德成, 等. 模拟座舱压力变化对中耳影响的研究[J]. 航天医学与医学工程, 1989, 2(1): 30-35,75-76.

    ZHU Z P, YU Q X, GAO D C, et al. Effects of simulated gabin pressure change on the middle ear in human[J]. Space Medicine & Medical Engineering, 1989, 2(1): 30-35,75-76(in Chinese).
    [24] VALERIE I. A fix is coming for a problem that left two F-35 pilots in ‘excruciating’ pain[EB/OL]. (2019-06-12) [2023-05-11]. https://www.defensenews.com/air/2019/06/12/a-fix-is-coming-for-a-problem-that-left-two-f-35-pilots-in-excruciating-pain/.
    [25] 刘剑飞, 王伟. 飞机座舱压力调节系统推油门“压耳” 故障原因及解决措施研究[J]. 河南科技, 2019, 38(1): 92-95.

    LIU J F, WANG W. Solution and research of push throttle pressure ear fault in cabin pressure regulating system[J]. Henan Science and Technology, 2019, 38(1): 92-95(in Chinese).
    [26] MEGAN E. Navy rules out suspected physiological episodes cause while super hornet rates grow in 2019[EB/OL]. (2019-04-04) [2023-05-11]. https://news.usni.org/2019/04/04/navy-rules-out-contamination-as-physiological-episodes-cause-focused-on-air-pre-ssure-as-super-hornet-rates-still-high.
    [27] 胡正元, 史秀凤, 范静平. 不同增压速率所引起的耳气压伤特征[J]. 声学技术, 2004, 23(1): 25-28. doi: 10.3969/j.issn.1000-3630.2004.01.007

    HU Z Y, SHI X F, FAN J P. Characteristics of aural barotrauma caused by different compression rate[J]. Technical Acoustics, 2004, 23(1): 25-28(in Chinese). doi: 10.3969/j.issn.1000-3630.2004.01.007
    [28] CHAURASIYA K L, BHATTACHARYA B, VARMA A K, et al. Dynamic modeling of a cabin pressure control system[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(2): 401-415. doi: 10.1177/0954410019867578
    [29] 廉乐明, 谭羽非, 吴家正, 等. 工程热力学[M]. 5版. 北京: 中国建筑工业出版社, 2007.

    LIAN L M, TAN Y F, WU J Z, et al. Engineering thermodynamics[M]. 5th ed. Beijing: China Architecture & Building Press, 2007(in Chinese).
    [30] 崔超群. 针对座舱压力增长率的分析与研究[J]. 中国科技纵横, 2013(20): 183-184.

    CUI C Q. Analysis and research on the growth rate of cabin pre-ssure[J]. China Science & Technology Overview, 2013(20): 183-184(in Chinese).
  • 加载中
图(15)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  45
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 录用日期:  2023-08-14
  • 网络出版日期:  2023-08-22
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答