留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑模理论的轧机异步电机模型预测电流控制

方毅芳 吴达远 刘涛 杨盼盼 李文博

方毅芳,吴达远,刘涛,等. 基于滑模理论的轧机异步电机模型预测电流控制[J]. 北京航空航天大学学报,2024,50(11):3382-3390 doi: 10.13700/j.bh.1001-5965.2023.0576
引用本文: 方毅芳,吴达远,刘涛,等. 基于滑模理论的轧机异步电机模型预测电流控制[J]. 北京航空航天大学学报,2024,50(11):3382-3390 doi: 10.13700/j.bh.1001-5965.2023.0576
FANG Y F,WU D Y,LIU T,et al. Model predictive current control of asynchronous motor in rolling mill based on sliding mode theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3382-3390 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0576
Citation: FANG Y F,WU D Y,LIU T,et al. Model predictive current control of asynchronous motor in rolling mill based on sliding mode theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3382-3390 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0576

基于滑模理论的轧机异步电机模型预测电流控制

doi: 10.13700/j.bh.1001-5965.2023.0576
基金项目: 国家重点研发计划(2018AAA0101803)
详细信息
    通讯作者:

    E-mail:wudayuan@qq.com

  • 中图分类号: TP13

Model predictive current control of asynchronous motor in rolling mill based on sliding mode theory

Funds: National Key Research and Development Program of China (2018AAA0101803)
More Information
  • 摘要:

    小型热连轧机异步传动电机具有生产效率高、操作简单等特点,但由于其经常处于高温、高压、粉尘等恶劣的工作环境中,对控制器的抗干扰性要求较高。针对小型热连轧机异步传动电机,结合滑模控制理论和模型预测控制,运用自适应滑模控制器(ASMC)作为转速外环控制器,且运用全阶滑模磁链观测器(SMRFO)观测并计算转子磁链,设计控制系统。仿真结果表明:该系统能够有效地控制小型热连轧机异步传动电机,相较于传统的模型预测电流控制系统,其响应速度和精度得到显著提升;当电机负载转矩突变时,该系统能够快速重新追踪给定速度,进一步提升抗干扰能力。

     

  • 图 1  两电平逆变器电路

    Figure 1.  Two level inverter circuit

    图 2  开关电压矢量

    Figure 2.  Switching voltage vector

    图 3  ASMC-SMRFO-MPCC控制系统框图

    Figure 3.  ASMC-SMRFO-MPCC control system block diagram

    图 4  PI-MPCC负载转矩恒定仿真结果

    Figure 4.  PI-MPCC load torque constant simulation results

    图 5  SMC-MPCC负载转矩恒定仿真结果

    Figure 5.  SMC-MPCC load torque constant simulation results

    图 6  ASMC-MPCC负载转矩恒定仿真结果

    Figure 6.  Simulation results of constant load torque for ASMC-MPCC

    图 7  SMC-MPCC负载转矩突变仿真结果

    Figure 7.  SMC-MPCC load torque sudden simulation results

    图 8  ASMC-MPCC负载转矩突变仿真结果

    Figure 8.  Simulation results of sudden load torque changes in ASMC-MPCC

    图 9  ASMC-SMRFO-MPCC负载转矩突变仿真结果

    Figure 9.  Simulation results of load torque sudden changes in ASMC-SMRFO-MPCC

    表  1  开关状态和电压矢量对应

    Table  1.   Switch state and voltage vector correspondence table

    电压 ${S_a}{S_b}{S_c}$ $|{{\boldsymbol{u}}_{\rm s}}| = {u_{{\mathrm{s}}\alpha }} + {\mathrm{j}}{u_{{\mathrm{s}}\beta }}$
    ${{\boldsymbol{u}}_0}$ 000 0
    ${{\boldsymbol{u}}_1}$ 001 $\dfrac{2}{3}{V_{\rm{dc}}}$
    ${{\boldsymbol{u}}_2}$ 010 $\dfrac{1}{3}{V_{\rm{dc}}} + {\mathrm{j}}\dfrac{{\sqrt 3 }}{3}{V_{\rm{dc}}}$
    ${{\boldsymbol{u}}_3}$ 011 $ - \dfrac{1}{3}{V_{\rm{dc}}} + {\mathrm{j}}\dfrac{{\sqrt 3 }}{3}{V_{\rm{dc}}}$
    ${{\boldsymbol{u}}_4}$ 100 $ - \dfrac{2}{3}{V_{\rm{dc}}}$
    ${{\boldsymbol{u}}_5}$ 101 $ - \dfrac{1}{3}{V_{\rm{dc}}} - {\mathrm{j}}\dfrac{{\sqrt 3 }}{3}{V_{\rm{dc}}}$
    ${{\boldsymbol{u}}_6}$ 110 $\dfrac{1}{3}{V_{\rm{dc}}} - {\mathrm{j}}\dfrac{{\sqrt 3 }}{3}{V_{\rm{dc}}}$
    ${{\boldsymbol{u}}_7}$ 111 0
    下载: 导出CSV

    表  2  热连轧机异步传动电机参数

    Table  2.   Parameters of asynchronous drive motor for hot rolling mill

    参数 数值 参数 数值
    功率/kW 12 定子电阻/$\Omega $ 1.2
    额定电压/V 380 转子电阻/$\Omega $ 1
    额定频率/Hz 50 定子电感/H 0.175
    转动惯量/(kg·m2) 0.062 转子电感/H 0.175
    极对数 1 互感/H 0.17
    下载: 导出CSV
  • [1] 韩东颖, 时培明, 赵东伟. 板带轧机机电传动系统参激非线性扭振鲁棒控制研究[J]. 振动与冲击, 2016, 35(12): 1-6.

    HAN D Y, SHI P M, ZHAO D W. Study on robust control for parametric excitation nonlinear torsional vibration of a strip-rolling mill’s mechanical and electrical drive system[J]. Journal of Vibration and Shock, 2016, 35(12): 1-6(in Chinese).
    [2] 王晓明. 轧机主传动交流调速系统的发展及应用[J]. 山东冶金, 2019, 41(1): 79-80.

    WANG X M. Development and application of alternating current governor system of mill main drive[J]. Shandong Metallurgy, 2019, 41(1): 79-80(in Chinese).
    [3] GOUWS R. Efficiency analysis of an induction motor with direct torque and flux control at a hot rolling mill[C]//Proceedings of the 8th Conference on the Industrial and Commercial Use of Energy. Piscataway: IEEE Press, 2011: 64-68.
    [4] 张希扬. 基于无差拍控制的异步电机模型预测转矩控制研究[D]. 杭州: 浙江大学, 2019.

    ZHANG X Y. Research of model predictive torque control for asynchronous motor based on dead-beat control[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
    [5] 刘涛, 方毅芳, 吴达远. 基于负载转矩观测器的热连轧电机模型预测控制[J]. 制造技术与机床, 2023(3): 121-129.

    LIU T, FANG Y F, WU D Y. Model predictive torque control of hot strip mill motor based on load torque observer[J]. Manufacturing Technology & Machine Tool, 2023(3): 121-129(in Chinese).
    [6] 宁博文, 周凤星, 卢少武. 基于高阶滑模速度控制器的异步电机模型预测转矩控制[J]. 控制与决策, 2021, 36(4): 953-958.

    NING B W, ZHOU F X, LU S W. A model predictive torque control for induction motor based on high order sliding mode speed controller[J]. Control and Decision, 2021, 36(4): 953-958(in Chinese).
    [7] 丁鲜花. 永磁同步电动机减小电流静差的低复杂度三矢量模型预测电流控制[D]. 西安: 西安理工大学, 2019.

    DING X H. Three-vector based low-complexity model predic-tive current control with reduced steady-state current error for permanent magnet synchronous motor[D]. Xi’an: Xi’an University of Technology, 2019(in Chinese).
    [8] 滕青芳, 靳宇星, 李姝湲. 基于全局快速终端滑模转速调节器的PMSM驱动系统模型预测电流控制[J]. 信息与控制, 2017, 46(6): 691-697.

    TENG Q F, JIN Y X, LI S Y. Model predictive current control for PMSM drive system based on global fast terminal sliding mode speed regulator[J]. Information and Control, 2017, 46(6): 691-697(in Chinese).
    [9] 侯利民, 王怀震, 李勇, 等. 带扰动补偿的离散滑模SPMSM模型预测电流控制[J]. 信息与控制, 2017, 46(2): 186-191.

    HOU L M, WANG H Z, LI Y, et al. Model predictive current control for SPMSM using discrete sliding-mode control based on disturbance compensation[J]. Information and Control, 2017, 46(2): 186-191(in Chinese).
    [10] SAEED S, ZHAO W X, WANG H N, et al. Fault-tolerant deadbeat model predictive current control for a five-phase PMSM with improved SVPWM[J]. Chinese Journal of Electrical Engineering, 2021, 7(3): 111-123. doi: 10.23919/CJEE.2021.000030
    [11] ZHANG Y Q, YIN Z G, LI W, et al. Adaptive sliding-mode-based speed control in finite control set model predictive torque control for induction motors[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8076-8087. doi: 10.1109/TPEL.2020.3042181
    [12] NIU F, CHEN X, HUANG S P, et al. Model predictive current control with adaptive-adjusting timescales for PMSMs[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(2): 108-117. doi: 10.30941/CESTEMS.2021.00014
    [13] SUN Z, DENG Y T, WANG J L, et al. Finite control set model-free predictive current control of PMSM with two voltage vectors based on ultralocal model[J]. IEEE Transactions on Power Electronics, 2023, 38(1): 776-788. doi: 10.1109/TPEL.2022.3198990
    [14] 张亚林. 异步电机模型预测电流控制技术研究[D]. 武汉: 华中科技大学, 2012.

    ZHANG Y L. Research on model predictive current control of inverter supplied induction machine[D]. Wuhan: Huazhong University of Science and Technology, 2012(in Chinese).
    [15] 窦智峰, 晋玉祥, 金楠, 等. 高效电压源逆变器双矢量模型预测电流控制[J]. 电机与控制学报, 2020, 24(6): 153-162.

    DOU Z F, JIN Y X, JIN N, et al. Two-vector-based mode predictive current control for voltage source inverter with high efficiency[J]. Electric Machines and Control, 2020, 24(6): 153-162(in Chinese).
    [16] YIN Z G, LI L T, GAO F T, et al. Robust current predicted control of permanent magnet synchronous motors based on novel sliding model observer[C]//Proceedings of the IEEE 4th International Electrical and Energy Conference. Piscataway: IEEE Press, 2021: 1-6.
    [17] LIN C K, YU J T, FU L C, et al. Model-based predictive current control for four-switch three-phase inverter-fed IPMSM with an adaptive backstepping complementary PI sliding-mode position controller[C]//Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway: IEEE Press, 2012: 1042-1047.
    [18] SUN X D, LI T, ZHU Z, et al. Speed sensorless model predictive current control based on finite position set for PMSHM drives[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2743-2752. doi: 10.1109/TTE.2021.3081436
    [19] TENG Q F, LUO W D. Model predictive current control for PMSM driven by three-level inverter based on fractional sliding mode speed observer[J]. Journal of Measurement Science and Instrumentation, 2020, 11(4): 358-364.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  57
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-08
  • 录用日期:  2023-10-27
  • 网络出版日期:  2023-11-17
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答