留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于POD-LSTM网络的平流层风场短期预测

文博群 苗景刚 卢莹 周书宇

文博群,苗景刚,卢莹,等. 基于POD-LSTM网络的平流层风场短期预测[J]. 北京航空航天大学学报,2025,51(11):3982-3990 doi: 10.13700/j.bh.1001-5965.2023.0608
引用本文: 文博群,苗景刚,卢莹,等. 基于POD-LSTM网络的平流层风场短期预测[J]. 北京航空航天大学学报,2025,51(11):3982-3990 doi: 10.13700/j.bh.1001-5965.2023.0608
WEN B Q,MIAO J G,LU Y,et al. Short-term prediction of stratospheric wind field based on POD-LSTM network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3982-3990 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0608
Citation: WEN B Q,MIAO J G,LU Y,et al. Short-term prediction of stratospheric wind field based on POD-LSTM network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3982-3990 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0608

基于POD-LSTM网络的平流层风场短期预测

doi: 10.13700/j.bh.1001-5965.2023.0608
基金项目: 

国家重点研发计划(2022YFB3207300)

详细信息
    通讯作者:

    E-mail:miaojg@aircas.ac.cn

  • 中图分类号: V221+.3;TB553

Short-term prediction of stratospheric wind field based on POD-LSTM network

Funds: 

National Key Research and Development Program of China (2022YFB3207300)

More Information
  • 摘要:

    平流层风场对平流层浮空器的升空及长航时驻空有重要影响。利用再分析数据,建立基于长短期记忆(LSTM)网络的再分析风场预测模型,利用本征正交分解(POD)对风场进行特征分解,提升模型对风场特征的检测和提取能力,在实际探空数据上检测再分析风场预测模型的泛化性。以喀什地区连续4年的再分析风场数据为研究对象,对比分析仅基于LSTM的预测模型与基于POD-LSTM的预测模型。结果表明:基于POD-LSTM的预测模型能有效检测到风场特征,提供更准确的风场预测;同时,基于POD-LSTM的预测模型对于探空风场具有更为显著的预测泛化性。研究结果可以在缺少历史实际风场数据的背景下,为实现准确的平流层风场短期预测提供解决途径。

     

  • 图 1  LSTM细胞单元

    Figure 1.  Cell unit of LSTM

    图 2  东西风场在POD后的特征能量保留率和累计能量保留率

    Figure 2.  Feature energy retention rate and cumulative energy retention rate of east-west wind field after POD

    图 3  东西方向的实际风场和基于POD还原后的风场

    Figure 3.  Real east-west wind field and reconstructed east-west wind field based on POD

    图 4  南北风场在POD后的特征能量保留率和累计能量保留率

    Figure 4.  Feature energy retention rate and cumulative energy retention rate of south-north wind field after POD

    图 5  南北方向的实际风场和基于POD还原后的风场

    Figure 5.  Real south-north wind field and reconstructed south-north wind field based on POD

    图 6  测试集上东西方向的实际再分析风场与基于LSTM的预测模型的预测风场

    Figure 6.  Real east-west reanalysis wind field from test set and predicted wind field by LSTM-based prediction model

    图 7  测试集上东西方向的实际再分析风场与基于POD-LSTM的预测模型的预测风场

    Figure 7.  Real east-west reanalysis wind field from test set and predicted wind field by POD-LSTM-based prediction model

    图 8  测试集上东西方向再分析风场的平均预测误差

    Figure 8.  Mean prediction error of east-west reanalysis wind field in test set

    图 9  测试集上南北方向的实际再分析风场与基于LSTM的预测模型的预测风场

    Figure 9.  Real south-north reanalysis wind field from test set and predicted wind field by LSTM-based prediction model

    图 10  测试集上南北方向的实际再分析风场与基于POD-LSTM的预测模型的预测风场

    Figure 10.  Real south-north reanalysis wind field from test set and predicted wind field by POD-LSTM-based prediction model

    图 11  测试集上南北方向再分析风场的平均预测误差

    Figure 11.  Mean prediction error of south-north reanalysis wind field in test set

    图 12  探空数据集上东西方向的实际风场与基于LSTM的预测模型的预测风场

    Figure 12.  Real east-west wind field from radiosonde dataset and predicted wind field by LSTM-based prediction model

    图 13  探空数据集上东西方向的实际风场与基于POD-LSTM的预测模型的预测风场

    Figure 13.  Real east-west wind field from radiosonde dataset and predicted wind field by POD-LSTM-based prediction model

    图 14  探空数据集上东西方向风场的平均预测误差

    Figure 14.  Mean prediction error of east-west wind field in radiosonde dataset

    图 15  探空数据集上南北方向的实际风场与基于LSTM的预测模型的预测风场

    Figure 15.  Real south-north wind field from radiosonde dataset and predicted wind field by LSTM-based prediction model

    图 16  探空数据集上南北方向的实际风场与基于POD-LSTM的预测模型的预测风场

    Figure 16.  Real south-north wind field from radiosonde dataset and predicted wind field by POD-LSTM-based prediction model

    图 17  探空数据集上南北方向风场的平均预测误差

    Figure 17.  Mean prediction error of south-north wind field in radiosonde dataset

    图 18  基于实际探空风场和2个模型的预测风场所得各自升空轨迹仿真结果

    Figure 18.  Simulated liftoff trajectories based on real radiosonde wind field and predicted wind fields from the two models

  • [1] 田文寿, 黄金龙, 郄锴, 等. 平流层大气环流的典型系统及变化特征综述[J]. 气象科学, 2020, 40(5): 628-638.

    TIAN W S, HUANG J L, QIE K, et al. Review of the general atmospheric circulation in the stratosphere and its variation features[J]. Journal of the Meteorological Sciences, 2020, 40(5): 628-638(in Chinese).
    [2] 杨燕初, 张航悦, 赵荣. 零压式高空气球球形设计与参数敏感性分析[J]. 国防科技大学学报, 2019, 41(1): 58-64. doi: 10.11887/j.cn.201901009

    YANG Y C, ZHANG H Y, ZHAO R. Shape design of zero pressure high altitude balloon and sensitivity analysis of key parameters[J]. Journal of National University of Defense Technology, 2019, 41(1): 58-64(in Chinese). doi: 10.11887/j.cn.201901009
    [3] 郭建国, 周军. 临近空间低动态飞行器控制研究综述[J]. 航空学报, 2014, 35(2): 320-331.

    GUO J G, ZHOU J. Review of the control of low dynamic vehicles in near space[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 320-331(in Chinese).
    [4] 曾庆存. 大气运动的特征参数和动力学方程[J]. 气象学报, 1963, 21(4): 472-483.

    ZENG Q C. Characteristic parameters and dynamic equations of atmospheric motion[J]. Acta Meteorologica Sinica, 1963, 21(4): 472-483(in Chinese).
    [5] CHARNEY J G, FJÖRTOFT R, VON NEUMANN J. Numerical integration of the barotropic vorticity equation[J]. Tellus, 1950, 2(4): 237-254. doi: 10.3402/tellusa.v2i4.8607
    [6] 张晨阳, 马志强, 刘利民, 等. Hadoop下基于粗糙集与贝叶斯的气象数据挖掘研究[J]. 计算机应用与软件, 2015, 32(4): 72-76.

    ZHANG C Y, MA Z Q, LIU L M, et al. Research on rough set and Bayes-based meteorological data mining on hadoop platform[J]. Computer Applications and Software, 2015, 32(4): 72-76(in Chinese).
    [7] 蔡舒平, 孙华辰. 短期负荷预测中气象因素的Fisher信息建模方法[J]. 科学技术创新, 2018(17): 35-36. doi: 10.3969/j.issn.1673-1328.2018.17.020

    CAI S P, SUN H C. Fisher information modeling method of meteorological factors in short-term load forecasting[J]. Scientific and Technological Innovation, 2018(17): 35-36(in Chinese). doi: 10.3969/j.issn.1673-1328.2018.17.020
    [8] REMSBERG E, LINGENFELSER G, HARVEY V L, et al. On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D20): 4628.
    [9] 徐熙超, 杨铮, 马廷淮. 基于HBase的气象结构化数据查询优化[J]. 计算机工程与应用, 2017, 53(9): 80-84.

    XU X C, YANG Z, MA T H. Optimization of meteorological structured data based on HBase[J]. Computer Engineering and Applications, 2017, 53(9): 80-84(in Chinese).
    [10] KWONG K M, WONG M H Y, LIU J N K, et al. An artificial neural network with chaotic oscillator for wind shear alerting[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(10): 1518-1531. doi: 10.1175/2011JTECHA1501.1
    [11] 黄豪南, 郑祥, 韦勇凤. 基于BP神经网络-SARIMA组合模型对气象要素预测与天气多因子期权的估值[J]. 投资研究, 2018, 37(5): 82-97.

    HUANG H N, ZHENG X, WEI Y F. Forecasting of meteorological elements time series and pricing of weather multi-factor options: integrating BP neural network and SARIMA model[J]. Review of Investment Studies, 2018, 37(5): 82-97(in Chinese).
    [12] 任才溶, 谢刚. 基于随机森林和气象参数的PM2.5浓度等级预测[J]. 计算机工程与应用, 2019, 55(2): 213-220. doi: 10.3778/j.issn.1002-8331.1709-0378

    REN C R, XIE G. Prediction of PM2.5 concentration level based on random forest and meteorological parameters[J]. Computer Engineering and Applications, 2019, 55(2): 213-220(in Chinese). doi: 10.3778/j.issn.1002-8331.1709-0378
    [13] BI K F, XIE L X, ZHANG H H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7970): 533-538. doi: 10.1038/s41586-023-06185-3
    [14] 王怡婷, 陈曦, 鞠兴旺, 等. 基于GRU网络的气象要素预测算法[J]. 计算机仿真, 2021, 38(7): 419-423.

    WANG Y T, CHEN X, JU X W, et al. A meteorological element prediction algorithm based on GRU network[J]. Computer Simulation, 2021, 38(7): 419-423(in Chinese).
    [15] GAO S, ZHAO P, PAN B, et al. A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network[J]. Acta Oceanologica Sinica, 2018, 37(5): 8-12. doi: 10.1007/s13131-018-1219-z
    [16] ANINDYA C. An introduction to the proper orthogonal decomposition[J]. Current Science, 2000, 78(7): 808-817.
  • 加载中
图(18)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  75
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-25
  • 录用日期:  2024-04-05
  • 网络出版日期:  2024-04-29
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答