留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种有限实测样本条件下SAR目标识别方法

孙晓坤 陈洋 胡粲彬 项德良

孙晓坤,陈洋,胡粲彬,等. 一种有限实测样本条件下SAR目标识别方法[J]. 北京航空航天大学学报,2025,51(12):4106-4114 doi: 10.13700/j.bh.1001-5965.2023.0648
引用本文: 孙晓坤,陈洋,胡粲彬,等. 一种有限实测样本条件下SAR目标识别方法[J]. 北京航空航天大学学报,2025,51(12):4106-4114 doi: 10.13700/j.bh.1001-5965.2023.0648
SUN X K,CHEN Y,HU C B,et al. SAR target recognition method under limited measured sample conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4106-4114 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0648
Citation: SUN X K,CHEN Y,HU C B,et al. SAR target recognition method under limited measured sample conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4106-4114 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0648

一种有限实测样本条件下SAR目标识别方法

doi: 10.13700/j.bh.1001-5965.2023.0648
基金项目: 

国家自然科学基金(62171015);中央高校基本科研业务费专项资金(buctrc202218)

详细信息
    通讯作者:

    E-mail:canbinhu@163.com

  • 中图分类号: TP75

SAR target recognition method under limited measured sample conditions

Funds: 

National Natural Science Foundation of China (62171015); The Fundamental Research Funds for the Central Universities (buctrc202218)

More Information
  • 摘要:

    深度学习在合成孔径雷达(SAR)自动目标识别(ATR)领域中应用广泛。针对SAR图像的成像特点及标记样本有限的问题,提出基于深度特征融合模型的迁移学习方法。利用卷积神经网络(CNN)和图神经网络(GNN)分别提取图像域上的全局特征和属性散射特征,将2支网络提取得到的特征进行融合,融合后的特征能充分利用SAR图像的幅值和相位信息来完成SAR目标的识别分类。通过全仿真SAR数据预训练得到网络的模型参数,在训练阶段采用投影梯度下降的对抗训练算法来提升模型的对抗鲁棒性。结合迁移学习的思想,利用有限实测数据对预训练模型进行迭代微调。实验结果表明:所提方法在完全缺少实测样本条件下达到94.43%的识别率,同时所提方法能有效提升有限实测样本条件下SAR目标识别的精度。

     

  • 图 1  本文方法的网络总体结构

    Figure 1.  Overall network structure of the proposed method

    图 2  基于CNN的全局特征提取网络

    Figure 2.  CNN-based global feature extraction networks

    图 3  基于GNN的散射特征提取网络

    Figure 3.  GNN-based scattering feature extraction network

    图 4  迁移学习总体框架

    Figure 4.  Overall framework for transfer learning

    图 5  SAMPLE 数据集中每种车辆目标的一对图像示例(实测数据和仿真数据)

    Figure 5.  A pair of image examples (measured and synthetic) for each vehicle in SAMPLE dataset

    图 6  OMP算法提取的散射中心结果

    Figure 6.  Scattering center extraction results obtained by OMP algorithm

    表  1  不同参数对应的几何散射体

    Table  1.   Geometric scattering types corresponding to different parameters

    几何散射类型 $(\alpha ,L)$ 示意图
    二面角 $ \alpha =1,L > 0 $
    三面角 $ \alpha =1,L=0 $
    圆柱 $ \alpha =0.5,L > 0 $
    $ \alpha =0,L=0 $
    边缘侧向 $ \alpha =0,L > 0 $
    边缘绕射 $ \alpha =-0.5,L > 0 $
    角绕射 $ \alpha =-1,L=0 $
    下载: 导出CSV

    表  2  SAMPLE 数据集10类样本数量

    Table  2.   Details of SAMPLE ten-target dataset

    目标
    类别
    训练样本
    数量
    测试样本
    数量
    目标
    类别
    训练样本
    数量
    测试样本
    数量
    2S1 116 58 M35 76 53
    BMP2 55 52 M548 75 53
    BTR70 43 49 M60 116 60
    M1 78 51 T72 56 52
    M2 75 53 ZSU23 116 58
    下载: 导出CSV

    表  3  SAMPLE数据集10类目标识别结果的混淆矩阵

    Table  3.   Confusion matrix of ten types of target recognition results on SAMPLE dataset

    类别 混淆矩阵元素 识别率/%
    BTR70 M548 M35 T72 M2 M1 M60 ZSU23 2S1 BMP2
    BTR70 49 0 0 0 0 0 0 0 0 0 100
    M548 0 49 4 0 0 0 0 0 0 0 92.45
    M35 0 0 52 1 0 0 0 0 0 0 98.11
    T72 0 0 0 51 0 0 0 0 0 1 98.07
    M2 0 0 0 0 40 0 2 5 1 5 75.47
    M1 0 0 0 0 0 51 0 0 0 0 100
    M60 0 0 0 0 0 1 59 0 0 0 98.33
    ZSU23 1 0 0 0 0 0 0 48 9 0 82.76
    2S1 0 0 0 0 0 0 0 0 58 0 100
    BMP2 0 0 0 0 0 0 0 0 0 52 100
    下载: 导出CSV

    表  4  不同方法在SAMPLE数据集上的识别率对比

    Table  4.   Comparison of recognition rates between different methods on SAMPLE dataset

    方法 识别率/%
    SRC[20] 73.67
    A-convnet[4] 85.23
    CNN-TDDL[21] 87.37
    DenseNet[18] 80.31
    ResNet-18[22] 88.90
    本文方法 94.43
    下载: 导出CSV

    表  5  不同实测数据量下的各类目标识别率比较

    Table  5.   Comparison of various targets recognition performance under different measured data volumes

    类别 识别率/%
    实测
    数据量为0%
    实测
    数据量为20%
    实测
    数据量为50%
    BTR70 100 100 100
    M548 92.45 98.11 100
    M35 98.11 96.23 100
    T72 98.07 100 100
    M2 75.47 98.11 94.34
    M1 100 100 100
    M60 98.33 100 100
    ZSU23 82.76 98.28 100
    2S1 100 100 100
    BMP2 100 100 100
    下载: 导出CSV

    表  6  有限实测数据下的识别率比较

    Table  6.   Comparison of recognition performance under limited measured data

    实测数据量/% 识别率/%
    CycleGAN[23] 本文方法
    0 88.45 94.43
    20 97.58 99.07
    50 99.83 99.44
    下载: 导出CSV

    表  7  对抗训练有效性验证的消融实验

    Table  7.   Ablation study for verifying the effectiveness of adversarial training

    方法 训练方式 识别率/%
    SGD PGD
    Resnet-18[21] × 71.97
    Resnet-18[21] × 88.90
    VGG变体[25] × 82.00
    VGG变体[25] × 89.42
    本文方法 × 85.90
    × 94.43
    下载: 导出CSV

    表  8  双分支网络有效性验证的消融实验

    Table  8.   Ablation study for verifying effectiveness of dual-branch networks

    网络结构 识别率/%
    实测
    数据量为0%
    实测
    数据量为20%
    实测
    数据量为50%
    CNN 89.42 95.36 98.87
    CNN-GNN 94.43 99.07 99.44
    下载: 导出CSV
  • [1] KECHAGIAS-STAMATIS O, AOUF N. Automatic target recognition on synthetic aperture radar imagery: a survey[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(3): 56-81. doi: 10.1109/MAES.2021.3049857
    [2] 郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462-476. doi: 10.12000/JR20059

    GUO W W, ZHANG Z H, YU W X, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462-476(in Chinese). doi: 10.12000/JR20059
    [3] MORGAN D A E. Deep convolutional neural networks for ATR from SAR imagery[C]//Proceedings of the Algorithms for Synthetic Aperture Radar Imagery XXII. Bellingham: SPIE, 2015: 116-128.
    [4] CHEN S Z, WANG H P, XU F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. doi: 10.1109/TGRS.2016.2551720
    [5] ZHAO P F, LIU K, ZOU H, et al. Multi-stream convolutional neural network for SAR automatic target recognition[J]. Remote Sensing, 2018, 10(9): 1473. doi: 10.3390/rs10091473
    [6] ZHANG Z M, WANG H P, XU F, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177-7188. doi: 10.1109/TGRS.2017.2743222
    [7] ZENG Z Q, SUN J P, HAN Z, et al. SAR automatic target recognition method based on multi-stream complex-valued networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5228618.
    [8] MALMGREN-HANSEN D, KUSK A, DALL J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1484-1488. doi: 10.1109/LGRS.2017.2717486
    [9] LIU M, PENG L J, LIU X H, et al. SAR image classification based on CNN in real and simulation datasets[C]//Proceedings of the Ninth International Conference on Graphic and Image Processing. Bellingham: SPIE, 2018: 820-827.
    [10] 霍鑫怡, 李焱磊, 陈龙永, 等. 基于卷积注意力和胶囊网络的SAR少样本目标识别方法[J]. 中国科学院大学学报, 2022, 39(6): 783-792.

    HUO X Y, LI Y L, CHEN L Y, et al. SAR few-sample target recognition method based on convolutional block attention module and capsule network[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(6): 783-792(in Chinese).
    [11] ZHANG L B, LENG X G, FENG S J, et al. Domain knowledge powered two-stream deep network for few-shot SAR vehicle recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5215315.
    [12] LI L P, LIU J, SU L Y, et al. A novel graph metalearning method for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4015705.
    [13] YANG M J, BAI X R, WANG L, et al. HENC: hierarchical embedding network with center calibration for few-shot fine-grained SAR target classification[J]. IEEE Transactions on Image Processing, 2023, 32: 3324-3337. doi: 10.1109/TIP.2023.3283065
    [14] HUANG Z L, PAN Z X, LEI B. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(4): 2324-2336.
    [15] POTTER L C, MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79-91. doi: 10.1109/83.552098
    [16] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]//Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers. Piscataway: IEEE Press, 1993: 40-44.
    [17] LEE J, LEE I, KANG J. Self-attention graph pooling[C]//Proceedings of the International Conference on Machine Learning. Long Beach: PMLR, 2019: 3734-3743.
    [18] LEWIS B, CAI K, BULLARD C. Adversarial training on SAR images[C]//Proceedings of the Automatic Target Recognition XXX. Bellingham: SPIE, 2020: 83-90.
    [19] LEWIS B, SCARNATI T, SUDKAMP E, et al. A SAR dataset for ATR development: the synthetic and measured paired labeled experiment (SAMPLE)[C]//Proceedings of the Algorithms for Synthetic Aperture Radar Imagery XXVI. Bellingham: SPIE, 2019: 39-54.
    [20] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(2): 210-227.
    [21] 康志强, 张思乾, 封斯嘉, 等. 稀疏先验引导CNN学习的SAR图像目标识别方法[J]. 信号处理, 2023, 39(4): 737-750.

    KANG Z Q, ZHANG S Q, FENG S J, et al. Sparse prior-guided CNN learning for SAR images target recognition[J]. Journal of Signal Processing, 2023, 39(4): 737-750 (in Chinese).
    [22] INKAWHICH N, INKAWHICH M J, DAVIS E K, et al. Bridging a gap in SAR-ATR: training on fully synthetic and testing on measured data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2942-2955. doi: 10.1109/JSTARS.2021.3059991
    [23] JENNISON A, LEWIS B, DELUNA A, et al. Convolutional and generative pairing for SAR cross-target transfer learning[C]//Proceedings of the Algorithms for Synthetic Aperture Radar Imagery XXVIII. Bellingham: SPIE, 2021: 13-19.
    [24] RUDER S. An overview of gradient descent optimization algorithms[EB/OL]. (2017-06-15)[2023-09-30]. https://arxiv.org/abs/1609.04747v2.
    [25] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2023-09-30]. https://arxiv.org/abs/1409.1556.
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  140
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 录用日期:  2023-11-16
  • 网络出版日期:  2023-12-07
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答