留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间用高效倒置结构三结砷化镓薄膜太阳电池本构参数研究

高红鑫 赵寿根 朱佳林 余亦豪 刘欣

高红鑫,赵寿根,朱佳林,等. 空间用高效倒置结构三结砷化镓薄膜太阳电池本构参数研究[J]. 北京航空航天大学学报,2025,51(12):4323-4329 doi: 10.13700/j.bh.1001-5965.2023.0651
引用本文: 高红鑫,赵寿根,朱佳林,等. 空间用高效倒置结构三结砷化镓薄膜太阳电池本构参数研究[J]. 北京航空航天大学学报,2025,51(12):4323-4329 doi: 10.13700/j.bh.1001-5965.2023.0651
GAO H X,ZHAO S G,ZHU J L,et al. Research on constitutive parameters of high-efficiency inverted metamorphic GaAs triple junction solar cell for space applications[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4323-4329 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0651
Citation: GAO H X,ZHAO S G,ZHU J L,et al. Research on constitutive parameters of high-efficiency inverted metamorphic GaAs triple junction solar cell for space applications[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4323-4329 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0651

空间用高效倒置结构三结砷化镓薄膜太阳电池本构参数研究

doi: 10.13700/j.bh.1001-5965.2023.0651
详细信息
    通讯作者:

    E-mail:zshougen@buaa.edu.cn

  • 中图分类号: TP18;O34

Research on constitutive parameters of high-efficiency inverted metamorphic GaAs triple junction solar cell for space applications

More Information
  • 摘要:

    倒置结构三结砷化镓薄膜(IMM)太阳电池由于很好地解决了多结电池带隙不匹配的问题,因此获得更高的光电转换效率,为下一代空间用太阳电池提供了一种选择。IMM太阳电池具有塑性材料的力学特性,区别于传统三结砷化镓薄膜电池的脆性材料特性,所以IMM太阳电池本构模型的准确性是仿真其抗力学环境影响的关键因素。所提方法利用Voce本构模型对IMM太阳电池进行拉伸试验模拟,并在ANSYS-OptiSLang联合仿真平台上采用非线性二次规划算法优化本构模型参数。通过将数值模拟结果与实际试验数据进行比对,并将其差异作为目标函数进行最小化,成功获得了与试验测试结果非常接近的应力-应变曲线。结果表明:所提方法建立的IMM太阳电池本构模型可在后续其他力学仿真分析中使用。

     

  • 图 1  Voce本构模型

    Figure 1.  Voce constitutive model

    图 2  $ \mathrm{I}\mathrm{M}\mathrm{M} $三结太阳电池

    Figure 2.  IMM triple-junction solar cells

    图 3  $ \mathrm{I}\mathrm{M}\mathrm{M} $三结太阳电池的拉伸试样

    Figure 3.  Tensile sample of IMM triple-junction solar cells

    图 4  MD和TD应力-应变曲线

    Figure 4.  Strain-stress curves of MD and TD

    图 5  实验过程和试样典型断裂

    Figure 5.  Diagram of the experimental process and typical fracture diagram of the specimen

    图 6  材料参数反演优化流程

    Figure 6.  Material Parameter inversion excellent flow chart

    图 7  ANSYS Workbench联合仿真平台

    Figure 7.  ANSYS Workbench co-simulation platform

    图 8  拉伸试验Mechanical模型

    Figure 8.  Tensile test Mechanical model

    图 9  DoE应力-应变曲线

    Figure 9.  Stress-Strain curve calculate by DoE

    图 10  CoP预测质量

    Figure 10.  CoP prediction quality

    图 11  目标函数响应面(CoP>99%)

    Figure 11.  Response surface for objective function

    图 12  NLPQL优化历史过程

    Figure 12.  historical process of NLPQL optimization

    图 13  实验测试与仿真模拟应力-应变曲线对比

    Figure 13.  Experimental and simulated stress-strain curves

    表  1  输入参数的设计空间

    Table  1.   Input Parameter Design Space

    参数值 弹性模量/
    GPa
    屈服应力/
    MPa
    线性
    系数
    指数
    系数
    饱和应力/
    MPa
    初始值 106 158 0 58 878
    参数值范围 80~130 120~180 0~100 40~70 700~1 100
    下载: 导出CSV

    表  2  最佳设计点参数与初始参数对比

    Table  2.   Comparison of best design point parameters with initial parameters

    参数值 弹性模量/
    GPa
    屈服应力/
    MPa
    线性
    系数
    指数
    系数
    饱和应力/
    MPa
    $\sqrt{\displaystyle\sum _{i=1}^{150}{({y}_{i}^{*}-{y}_{i})}^{2}} $
    初始值 106 158 0 58 878 627.5
    最佳值 124.14 150.98 8.68 70 1 100 276.6
    下载: 导出CSV
  • [1] GUTER W, DUNZER F, EBEL L, et al. Space solar cells–3G30 and next generation radiation hard products[J]. E3S Web of Conferences, 2017, 16: 03005. doi: 10.1051/e3sconf/20171603005
    [2] STAN M, AIKEN D, CHO B, et al. Very high efficiency triple junction solar cells grown by MOVPE[J]. Journal of Crystal Growth, 2008, 310(23): 5204-5208. doi: 10.1016/j.jcrysgro.2008.07.024
    [3] LI J, AIERKEN A, ZHUANG Y, et al. 1 MeV electron and 10 MeV proton irradiation effects on inverted metamorphic GaInP/GaAs/InGaAs triple junction solar cell[J]. Solar Energy Materials and Solar Cells, 2021, 224: 111022. doi: 10.1016/j.solmat.2021.111022
    [4] QIAN M, ZHANG Y, MAO X J, et al. Flexible photoelectronic material device and investigation method for space applications[J]. Progress in Aerospace Sciences, 2023, 139: 100901. doi: 10.1016/j.paerosci.2023.100901
    [5] SONG M-H, WANG D-X, BI J-F, et al. Inverted metamorphic triple-junction solar cell and its radiation hardness for space applications[J]. Acta Physica Sinica, 2017, 66(18): 188801. doi: 10.7498/aps.66.188801
    [6] 周南. 柔性薄膜太阳能电池力学性能及其在膜结构中的应用研究[D]. 杭州: 浙江大学, 2010: 18-21.

    ZHOU, N. Mechanical properties of flexible thin film solar cells and its applied research in membrane structure[D]. Hangzhou: Zhejiang University, 2010: 18-21(in Chinese).
    [7] WAKAYAMA S, MIZUTANI A. AE analysis of damage process in thin film solar cells under mechanical strain[C]//Proceedings of the 29th European Conference on Acoustic Emission Testing. Vienna: eTNDT, 2010: 62.
    [8] 汪冠宇, 马贵春, 吴建军. 2099-T83铝锂合金本构模型研究[J]. 塑性工程学报, 2019, 26(1): 174-181.

    WANG G Y, MA G C, WU J J. Research on constitutive model of 2099-T83 aluminum-lithium alloy[J]. Journal of Plasticity Engineering, 2019, 26(1): 174-181(in Chinese).
    [9] 董菲, GERMAIN G, LEBRUN J, 等. 有限元分析法确定Johson-Cook本构方程材料参数[J]. 上海交通大学学报, 2011, 45(11): 1657-1660,1667.

    DONG F, GERMAIN G, LEBRUN J, et al. Identification of Johnson-cook constitutive model by finite element analysis[J]. Journal of Shanghai Jiao Tong University, 2011, 45(11): 1657-1660,1667(in Chinese).
    [10] SAINATH G, CHOUDHARY B K, CHRISTOPHER J, et al. Applicability of voce equation for tensile flow and work hardening behaviour of P92 ferritic steel[J]. International Journal of Pressure Vessels and Piping, 2015, 132: 1-9.
    [11] ASTM International. Standard test methods of tension testing of metallic foil: ASTM E345-24a[S]. West Conshohocken: ASTM International, 2024: 1-8.
    [12] 李璐璐, 周蕊, 张建国, 等. 基于ABAQUS-MATLAB联合仿真反演优化确定金属粉末成形本构模型参数[J]. 中国有色金属学报, 2018, 28(7): 1387-1393.

    LI L L, ZHOU R, ZHANG J G, et al. Inversion optimization of constitutive model parameters of metal powder forming based on ABAQUS-MATLAB joint simulation[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7): 1387-1393(in Chinese).
    [13] TINCA I E, AILINEI I I, DAVIDESCU A. Printed circuit board orthotropic material calibration for static and dynamic loading[C]//Proceedings of the 2022 IEEE 9th Electronics System-Integration Technology Conference. Piscataway: IEEE Press, 2022: 194-202.
    [14] 李洋, 桑建兵, 敖日汗, 等. 基于仿真和智能算法骨骼肌超弹性本构参数的反演方法研究[J]. 力学学报, 2021, 53(5): 1449-1456.

    LI Y, SANG J B, AO R H, et al. Research on inversion method of hyperelastic constitutive parameters of skeletal muscles based on simulation and intelligent algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1449-1456(in Chinese).
    [15] KAŇÁKOVÁ S, KOTTNER R. Identification of material properties of foam used in motorcyclist protective equipment based on obtained experimental data and optimization algorithm[J]. Applied and Computational Mechanics, 2018, 12(2): 139-146.
    [16] 徐晓宏, 赵万忠, 王春燕, 等. 基于NLPQL算法的电动轮汽车差速助力转向参数优化[J]. 中南大学学报(自然科学版), 2012, 43(9): 3431-3436.

    XU X H, ZHAO W Z, WANG C Y, et al. Parameters optimization of differential assisted steering for electric vehicle with motorized wheels based on NLPQL algorithm[J]. Journal of Central South University (Science and Technology), 2012, 43(9): 3431-3436(in Chinese).
    [17] TAGHAVIFAR H, ANVARI S. Optimization of a DI diesel engine to reduce emission and boost power by exergy and NLPQL method[J]. Environmental Progress & Sustainable Energy, 2020, 39(2): e13338.
    [18] DUBEC B, MAŇAS P, ŠTOLLER J, et al. Numerical identification of material model parameters of UHPFRC slab under blast loading[J]. Applied Sciences, 2023, 13(1): 70.
    [19] CADA Z, HRADIL P, MROZEK M. Parametric study on dynamic behaviour of a multi-storey building including soil-structure interaction[C]//Proceedings of the 17th International Conference on Engineering Mechanics. Svratka: ACM, 2011: 91-94.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  636
  • HTML全文浏览量:  144
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 录用日期:  2023-11-16
  • 网络出版日期:  2023-12-21
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答