留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于KMMS-ReliefF和SA-SVMRFE的高超声速进气道不起动状态识别

朱博楷 闵科 王靖瑶 曾建平

朱博楷,闵科,王靖瑶,等. 基于KMMS-ReliefF和SA-SVMRFE的高超声速进气道不起动状态识别[J]. 北京航空航天大学学报,2025,51(12):4330-4341 doi: 10.13700/j.bh.1001-5965.2023.0655
引用本文: 朱博楷,闵科,王靖瑶,等. 基于KMMS-ReliefF和SA-SVMRFE的高超声速进气道不起动状态识别[J]. 北京航空航天大学学报,2025,51(12):4330-4341 doi: 10.13700/j.bh.1001-5965.2023.0655
ZHU B K,MIN K,WANG J Y,et al. Recognition of hypersonic inlet unstart state based on KMMS-ReliefF and SA-SVMRFE[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4330-4341 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0655
Citation: ZHU B K,MIN K,WANG J Y,et al. Recognition of hypersonic inlet unstart state based on KMMS-ReliefF and SA-SVMRFE[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4330-4341 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0655

基于KMMS-ReliefF和SA-SVMRFE的高超声速进气道不起动状态识别

doi: 10.13700/j.bh.1001-5965.2023.0655
基金项目: 

1912项目

详细信息
    通讯作者:

    E-mail:jpzeng@xmu.edu.cn

  • 中图分类号: TP181

Recognition of hypersonic inlet unstart state based on KMMS-ReliefF and SA-SVMRFE

Funds: 

1912 Project

More Information
  • 摘要:

    进气道不起动会严重影响到高超声速发动机的正常运行。基于稳态压力信息的模式分类方法,以某高超声速三维内转式组合进气道为研究对象,通过提取关键可靠的壁面压力测点并构建高精度的分类模型,以解决不起动识别问题。在不同马赫数和背压条件下,通过数值模拟获得了若干起动/不起动沿程壁面压力数据。在测点选择算法设计上,提出了一种k-均值聚类与ReliefF相结合的算法,在解决原数据集起动/不起动类别不平衡的同时充分考虑了联合特征对的权重信息;为兼顾特征权重和全局分类精度,提出了一种引入模拟退火策略的改进支持向量机递归特征消除算法。将二者进行组合式设计,先采用KMMS-ReliefF算法快速剔除不相关测点,在剩余测点子集中通过SA-SVMRFE算法删除冗余测点,并与其他4种组合算法进行对比。实验结果表明:所提组合算法在最优特征子集维度上明显低于其他算法,利用十折交叉验证支持向量机(10-cv SVM)训练的不起动识别模型,在各模态通道测试集的平均分类准确率均达到99%以上,且具备较高运行效率。此外,通过k最近邻(kNN)、AdaBoost等其他分类算法验证了最优测点组合的可靠性。

     

  • 图 1  高超声速组合进气道的几何结构

    Figure 1.  Geometric structure of hypersonic combined inlet

    图 2  各模态计算网格

    Figure 2.  Calculation grid for each model

    图 3  各模态起动/不起动样本压力分布

    Figure 3.  Start/Unstart sample pressure distributions of each model

    图 4  SA-SVMRFE算法流程

    Figure 4.  Flow chart of SA-SVMRFE algorithm

    图 5  IAGA算法流程

    Figure 5.  Flow chart of IAGA algorithm

    图 6  实验方案流程

    Figure 6.  Flow chart of the experimental program

    图 7  基于SVM的测试集分类准确率对比

    Figure 7.  Comparison of classification accuracy of test sets based on SVM

    图 8  各模态不起动分类耗时对比

    Figure 8.  Comparison of execution time for unstart classification of each model

    表  1  不同工作点的数值条件

    Table  1.   Numerical conditions for different operating points

    $ {M_a} $H/km模态背压比
    1.59.1涡轮1,1.2,1.4,1.8,2,2.2,2.4,2.6
    2.013涡轮1,1.5,2,2.5,3,3.5,4.25,4.5,4.75,5
    2.515.5涡轮1,2,3,4,6,7,8,9
    2.515.5引射亚燃1,4,6,7,8
    3.018.5引射亚燃1,2,4,5,6,7,8.5,9.5,11
    4.022.7引射亚燃1,3,6,9,12,15,16,17,18
    4.022.7超燃冲压1,5,10,20,30,40,50
    4.524超燃冲压1,10,20,30,40,50,60,70,80
    5.026超燃冲压1,10,20,30,40,60,80,90,100,110,115
    6.028超燃冲压1,10,20,40,70,80,90,95,110,120,130,135
    下载: 导出CSV

    表  2  各模态起动/不起动样本信息

    Table  2.   Start/Unstart sample information for each model

    模态总样本数起动样本数不起动样本数特征数
    涡轮51346548100
    引射亚燃55649858100
    超燃冲压42038040100
    下载: 导出CSV

    表  3  各组合特征选择算法在最优特征维度下的分类性能指标

    Table  3.   Classification performance metrics of each combined feature selection algorithm under optimal feature dimensions

    模态 算法 最优特征维度 训练集准确率 测试集准确率 F1-Score AUC 平均耗时/s
    涡轮 RS 9 0.998 05 0.977 67 0.987 69 0.956 45 15.334
    KRSAS 4 0.993 17 0.990 29 0.995 21 0.987 96 24.358
    SASI 10 0.992 68 0.961 17 0.978 33 0.988 49 124.870
    KRISAS 4 0.989 51 0.985 44 0.991 87 0.997 42 161.290
    KRC 3 0.972 68 0.980 58 0.989 34 0.902 26 16.751
    引射亚燃 RS 10 1.000 00 0.988 39 0.993 55 1.000 00 16.339
    KRSAS 4 0.997 30 0.991 96 0.995 51 0.998 67 25.773
    SASI 8 0.995 27 0.981 25 0.989 61 0.985 42 117.040
    KRISAS 10 0.997 52 0.987 50 0.993 05 0.999 33 152.822
    KRC 10 1.000 00 0.995 54 0.997 51 0.999 92 16.504
    超燃冲压 RS 10 0.994 31 0.989 29 0.994 04 1.000 00 15.139
    KRSAS 5 0.989 82 0.990 48 0.994 72 0.993 26 28.104
    SASI 10 0.982 63 0.972 62 0.984 94 0.928 62 111.710
    KRISAS 9 0.989 22 0.971 43 0.984 31 0.991 12 158.230
    KRC 10 0.991 92 0.989 29 0.994 11 1.000 00 16.651
    下载: 导出CSV

    表  4  各算法在最优特征维度下的最优特征子集

    Table  4.   Optimal feature subsets for each algorithm under the optimal feature dimension

    模态 算法 最优特征子集 训练集准确率 测试集准确率 出现次数
    涡轮 KRSAS [37, 42, 92, 98] 1.000 00 1.000 00 1
    [44, 92, 98, 99] 0.990 24 1.000 00 3
    KRISAS [37, 43, 92, 98] 1.000 00 1.000 00 1
    引射亚燃 KRSAS [51, 59, 66, 67] 1.000 00 1.000 00 2
    [19, 48, 67, 76] 1.000 00 1.000 00 1
    KRC [36, 41, 45, 53, 60, 68, 72, 75, 88, 93] 1.000 00 1.000 00 3
    超燃冲压 RS [27, 30, 33, 34, 38, 39, 49, 56, 57, 58] 0.99 401 1.000 00 1
    KRSAS [20, 51, 56, 57, 58] 0.991 02 1.000 00 2
    [20, 51, 55, 57, 58] 0.991 02 1.000 00 2
    KRC [22, 24, 27, 32, 44, 46, 54, 65, 81, 82] 1.000 00 1.000 00 1
    下载: 导出CSV

    表  5  KRSAS算法最优特征子集的F1-Score验证结果

    Table  5.   F1-Score validation results for the optimal feature subsets of the KRSAS algorithm

    通道 最优特征子集
    和所有特征
    F1-Score F1-Score平均值
    SVM kNN AdaBoost XGBoost
    涡轮 [37, 42, 92, 98] 1.000 00 0.994 59 1.000 00 0.978 72 0.993 33
    [44, 92, 98, 99] 1.000 00 1.000 00 1.000 00 0.983 78 0.995 95
    所有特征 0.989 25 0.978 02 0.978 49 0.972 68 0.979 61
    引射亚燃 [51, 59, 66, 67] 1.000 00 0.990 00 0.990 10 0.985 22 0.991 33
    [19, 48, 67, 76] 1.000 00 0.979 59 0.975 37 0.965 52 0.980 12
    所有特征 0.995 02 0.994 97 0.995 02 0.970 30 0.988 83
    超燃冲压 [20, 51, 56, 57, 58] 1.000 00 0.980 39 0.993 38 0.986 84 0.990 15
    [20, 51, 55, 57, 58] 1.000 00 0.980 39 0.993 46 0.993 46 0.991 83
    所有特征 0.980 65 0.979 87 0.993 46 1.000 00 0.988 50
    下载: 导出CSV
  • [1] 谭慧俊, 卜焕先, 张启帆, 等. 高超声速进气道不起动问题的研究进展[J]. 南京航空航天大学学报, 2014, 46(4): 501-508. doi: 10.3969/j.issn.1005-2615.2014.04.003

    TAN H J, BU H X, ZHANG Q F, et al. Review of hypersonic inlet unstart phenomenon[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4): 501-508(in Chinese). doi: 10.3969/j.issn.1005-2615.2014.04.003
    [2] 张启帆, 谭慧俊, 陈昊. 基于滑动多缝板的高超声速进气道不起动振荡流态控制实验研究[J]. 推进技术, 2017, 38(7): 1450-1458.

    ZHANG Q F, TAN H J, CHEN H. Experimental study of unstart oscillatory flow control of hypersonic inlet with movable slot-plate[J]. Journal of Propulsion Technology, 2017, 38(7): 1450-1458(in Chinese).
    [3] 常军涛, 于达仁, 鲍文. 攻角引起的高超声速进气道不起动/再起动特性分析[J]. 航空动力学报, 2008, 23(5): 816-821.

    CHANG J T, YU D R, BAO W. Characteristic analysis of unstart/restart of hypersonic inlets caused by variations of attack angle of freestream[J]. Journal of Aerospace Power, 2008, 23(5): 816-821(in Chinese).
    [4] 刘振皓, 任方, 郭静, 等. 基于LES的超声速进气道不起动流场分析[C]//北京力学会第21届学术年会暨北京振动工程学会第22届学术年会论文集. 北京: 北京力学会, 2015: 1327-1329.

    LIU Z H, REN F, GUO J, et al. LES-based analysis of unstart flow field in supersonic intakes[C]//Proceeding of the 21st Annual Conference of the Beijing Society of Theoretical and Applied Mechanic and the 22nd Annual Conference of the Beijing Society of Vibration Engineering. Beijing: BSTAM, 2015: 1327-1329(in Chinese).
    [5] 王晨曦, 谭慧俊, 张启帆, 等. 高超声速进气道低马赫数不起动和再起动试验[J]. 航空学报, 2017, 38(11): 43-54.

    WANG C X, TAN H J, ZHANG Q F, et al. Test of low Mach number unstart and restart processes of hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 43-54(in Chinese).
    [6] CHANG J T, LI N, XU K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences, 2017, 89: 1-22. doi: 10.1016/j.paerosci.2016.12.001
    [7] 贺理浩, 张启帆, 岳连捷, 等. 高速进气道低马赫数不起动特性及马赫数影响规律[J]. 推进技术, 2021, 42(10): 2207-2217.

    HE L H, ZHANG Q F, YUE L J, et al. Unstart characteristics of high speed inlet at low Mach number and influence law of Mach number[J]. Journal of Propulsion Technology, 2021, 42(10): 2207-2217(in Chinese).
    [8] 袁化成, 梁德旺. 高超声速侧压式模型进气道不起动特性分析[J]. 南京航空航天大学学报, 2004, 36(6): 683-687. doi: 10.3969/j.issn.1005-2615.2004.06.003

    YUAN H C, LIANG D W. Characteristic analysis of unstart performance for hypersonic side-wall inlet model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2004, 36(6): 683-687(in Chinese). doi: 10.3969/j.issn.1005-2615.2004.06.003
    [9] YU D R, CHANG J T, BAO W, et al. Optimal classification criterions of hypersonic inlet start/unstart[J]. Journal of Propulsion and Power, 2007, 23(2): 310-316. doi: 10.2514/1.24640
    [10] CHANG J, YU D, BAO W, et al. A CFD assessment of classifications for hypersonic inlet start/unstart phenomena[J]. The Aeronautical Journal, 2009, 113(1142): 263-271. doi: 10.1017/S0001924000002931
    [11] 胡清华, 常军涛, 鲍文, 等. 高超声速发动机进气道起动/不起动模式分析[C]//第二十九届中国控制会议论文集. 北京: 中国控制会议, 2010: 5939-5944.

    HU Q H, CHANG J T, BAO W, et al. Pattern analysis on hypersonic inlet state of start/unstart[C]//Proceedings of the 29th Chinese Control Conference. Beijing: CCC, 2010: 5939-5944(in Chinese).
    [12] ZHENG R S, CHANG J T, HE H X, et al. Optimal classification of hypersonic inlet start/unstart based on manifold learning[J]. Applied Mechanics and Materials, 2013, 274: 200-203. doi: 10.4028/www.scientific.net/AMM.274.200
    [13] 刘欢, 黄俊, 张勇, 等. Relief和SVMRFE在高超声速进气道不起动预测中的应用[J]. 计算机测量与控制, 2018, 26(4): 183-186, 190.

    LIU H, HUANG J, ZHANG Y, et al. Application of relief and SVMRFE in predicting unstart of hypersonic inlet[J]. Computer Measurement & Control, 2018, 26(4): 183-186, 190.
    [14] 刘欢. 高超声速进气道起动/不起动分类研究与实现[D]. 绵阳: 西南科技大学, 2018: 33-35.

    LIU H. Research and implementation of classification of hypersonic inlet start/unstart[D]. Mianyang: Southwest University of Science and Technology, 2018: 33-35(in Chinese).
    [15] 王祥. 基于改进的自适应遗传算法与多模型融合的信贷风险预测模型研究[D]. 成都: 西南交通大学, 2021: 41-45.

    WANG X. Research on credit risk forecasting model based on improved adaptive genetic algorithm and multi-model fusion[D]. Chengdu: Southwest Jiaotong University, 2021: 41-45(in Chinese).
    [16] ZHU C X, ZHANG X, KONG F, et al. Design of a three-dimensional hypersonic inward-turning inlet with tri-ducts for combined cycle engines[J]. International Journal of Aerospace Engineering, 2018(1): 7459141.
    [17] ZHU C X, ZHANG H F, HU Z C, et al. Analysis on the low speed performance of an inward-turning multiduct inlet for turbine-based combined cycle engines[J]. International Journal of Aerospace Engineering, 2019(1): 6728387.
    [18] 蔡泽君, 胡占仓, 余联郴, 等. XTER内收缩组合进气道设计理念及气动特性[J]. 空气动力学学报, 2022, 40(1): 218-231. doi: 10.7638/kqdlxxb-2021.0393

    CAI Z J, HU Z C, YU L C, et al. Design concept and aerodynamic characteristics of XTER TBCC inlet[J]. Acta Aerodynamica Sinica, 2022, 40(1): 218-231(in Chinese). doi: 10.7638/kqdlxxb-2021.0393
    [19] ROBNIK-ŠIKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1): 23-69.
    [20] TIWARI D. Handling class imbalance problem using feature selection[J]. International Journal of Advanced Research in Computer Science & Technology, 2014, 2(2): 516-520.
    [21] 尹欢一. 一种改进的多阶段ReliefF特征选择算法[J]. 信息与电脑, 2019, 16: 45-47.

    YIN H Y. An improved multi-stage ReliefF feature selection algorithm[J]. China Computer & Communication, 2019, 16: 45-47(in Chinese).
    [22] GUYON I, WESTON J, BARNHILL S. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2001, 46(1-3): 389-422.
    [23] 张学工, 汪小我. 模式识别: 模式识别与机器学习[M]. 北京: 清华大学出版社, 2021: 137-156.

    ZHANG X G, WANG X W. Pattern recognition: pattern recognition and machine learning[M]. Beijing: Tsinghua University Press, 2021: 137-156(in Chinese).
    [24] 王君. 基于SVM-RFE的特征选择方法研究[D]. 大连: 大连理工大学, 2015: 13-17.

    WANG J. The research of feature selection algorithm based on SVM-RFE[D]. Dalian: Dalian University of Technology, 2015: 13-17(in Chinese).
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  57
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-12
  • 录用日期:  2024-03-12
  • 网络出版日期:  2024-03-25
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答