留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热载荷环境下金属-陶瓷功能梯度板屈曲特性

李畅 万志强 王晓喆 杨超 黎珂宇

李畅,万志强,王晓喆,等. 热载荷环境下金属-陶瓷功能梯度板屈曲特性[J]. 北京航空航天大学学报,2025,51(12):4196-4206 doi: 10.13700/j.bh.1001-5965.2023.0658
引用本文: 李畅,万志强,王晓喆,等. 热载荷环境下金属-陶瓷功能梯度板屈曲特性[J]. 北京航空航天大学学报,2025,51(12):4196-4206 doi: 10.13700/j.bh.1001-5965.2023.0658
LI C,WAN Z Q,WANG X Z,et al. Buckling characteristics of metal-ceramic functionally graded plates in thermal loading environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4196-4206 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0658
Citation: LI C,WAN Z Q,WANG X Z,et al. Buckling characteristics of metal-ceramic functionally graded plates in thermal loading environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4196-4206 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0658

热载荷环境下金属-陶瓷功能梯度板屈曲特性

doi: 10.13700/j.bh.1001-5965.2023.0658
基金项目: 

中国科协青年人才托举工程(2022QNRC001);航空科学基金(2022Z012051001)

详细信息
    通讯作者:

    E-mail:wangxiaozhemvp@buaa.edu.cn

  • 中图分类号: V250.1;O343.6

Buckling characteristics of metal-ceramic functionally graded plates in thermal loading environments

Funds: 

Young Elite Scientists Sponsorship Program by CAST (2022QNRC001); Aeronautical Science Foundation of China (2022Z012051001)

More Information
  • 摘要:

    功能梯度材料(FGM)是一种新型材料,由2种及以上的材料组分连续变化混合而成,由于其优秀的力学性能,被广泛应用于航空航天、生物医学、汽车等领域。但热载荷环境对FGM影响的解析理论研究还很少。针对功能梯度板的力学特性,提出一种基于里兹法和经典板理论的解析方法。重点分析了热载荷环境的影响,主要研究了热应力引起的刚度降低,以及材料属性随温度变化对FGM的影响。通过能量法表示应变能、热应变能,利用哈密顿原理建立运动微分方程,分析功能梯度板在均匀温度场、线性温度场和非线性温度场下的热屈曲特性。分析了梯度指数、温度场和宽厚比、宽长比等几何参数对功能梯度板屈曲特性的影响。结果表明:梯度指数对功能梯度板屈曲特性的影响呈复杂非线性,且温度场分布及材料属性随温度变化特性影响显著。

     

  • 图 1  功能梯度板坐标定义示意图

    Figure 1.  Schematic definition of the coordinate of functionally graded plates

    图 2  功能梯度板非线性温度场与泰勒阶数的关系

    Figure 2.  Nonlinear temperature field versus Taylor-orders for functionally graded plates

    图 3  功能梯度板非线性温度场与梯度指数的关系

    Figure 3.  Nonlinear temperature field versus gradient index for functionally graded plates

    图 4  均匀温度场下弹性模量与空间位置的关系

    Figure 4.  Elastic modulus versus spatial position under uniform temperature field

    图 5  线性温度场下弹性模量与空间位置的关系

    Figure 5.  Elastic modulus versus spatial position under linear temperature field

    图 6  非线性温度场下弹性模量与空间位置的关系

    Figure 6.  Elastic modulus versus spatial position under nonlinear temperature field

    图 7  临界屈曲温升与梯度指数的关系

    Figure 7.  Relationship between critical buckling temperature difference and gradient index

    图 8  临界屈曲温升与宽厚比的关系

    Figure 8.  Critical buckling temperature difference versus width-to-thickness ratio

    图 9  临界屈曲温升与宽长比的关系

    Figure 9.  Critical buckling temperature difference versus width-to-length ratio

    图 10  线性/非线性温度场下临界屈曲温升与梯度指数的关系

    Figure 10.  Critical buckling temperature difference versus gradient index under linear/nonlinear temperature field

    表  1  Ti-6Al-4V和ZrO2的材料性能

    Table  1.   Material properties for Ti-6Al-4V and ZrO2

    材料 弹性模量/Pa 热膨胀系数 密度/(kg·m−3) 热传导系数/(W·(m·K)−1))
    常数项 1次项 常数项 1次项 常数项 1次项 常数项 1次项
    Ti-6Al-4V 122.70×109 −4.605×10−4 7.430×10−6 7.483×10−4 4429 0 7.82 0
    ZrO2 132.20×109 −3.805×10−4 13.300×10−6 −1.421×10−3 3000 0 1.8 0
    下载: 导出CSV

    表  2  线性/非线性温度场下功能梯度板的临界屈曲温升

    Table  2.   Critical buckling temperature difference of functionally graded plates under linear and nonlinear temperature field

    梯度指数 b/h 温度场类型 临界屈曲温升/℃
    计算值 文献值[21]
    0 20 线性 844.9553 844.9553
    非线性 844.9553 844.9553
    40 线性 203.7388 203.7388
    非线性 203.7388 203.7388
    100 线性 24.1982 24.1982
    非线性 24.1982 24.1982
    1 20 线性 363.0796 363.0796
    非线性 493.9125 503.9879
    40 线性 83.7369 83.7369
    非线性 113.9108 116.2345
    100 线性 5.5209 5.5209
    非线性 7.5104 7.6635
    5 20 线性 304.0540 304.0540
    非线性 372.0301 380.2613
    40 线性 69.5587 69.5586
    非线性 85.1096 86.9926
    100 线性 3.9000 3.8999
    非线性 4.7719 4.8774
    下载: 导出CSV

    表  3  不同温度场下的临界屈曲温升(k=1)

    Table  3.   Critical buckling temperature difference under various temperature fields (k=1)

    温度场类型 临界屈曲温升/K
    均匀温度场(温度无关) 48.6373
    均匀温度场(温度相关) 50.2855
    线性温度场(温度无关) 87.9170
    线性温度场(温度相关) 95.4877
    非线性温度场(温度无关) 109.7937
    非线性温度场(温度相关) 122.9446
    下载: 导出CSV
  • [1] DAIKH A A, HOUARI M S A, BELARBI M O, et al. Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory[J]. Defence Technology, 2022, 18(10): 1778-1809. doi: 10.1016/j.dt.2021.09.011
    [2] LIEW K M, PAN Z Z, ZHANG L W. The recent progress of functionally graded CNT reinforced composites and structures[J]. Science China Physics, Mechanics & Astronomy, 2019, 63(3): 234601.
    [3] WANG P, GAO Z J, PAN F, et al. A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory[J]. Engineering Analysis with Boundary Elements, 2022, 143: 124-136. doi: 10.1016/j.enganabound.2022.06.007
    [4] KIANI Y, ŻUR K K. Free vibrations of graphene platelet reinforced composite skew plates resting on point supports[J]. Thin-Walled Structures, 2022, 176: 109363.
    [5] LI Z C, ZHANG Q, SHEN H, et al. Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure[J]. Thin-Walled Structures, 2023, 183: 110370.
    [6] VAN VINH P, VAN CHINH N, TOUNSI A. Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM[J]. European Journal of Mechanics-A/Solids, 2022, 96: 104743. doi: 10.1016/j.euromechsol.2022.104743
    [7] GHATAGE P S, KAR V R, SUDHAGAR P E. On the numerical modelling and analysis of multi-directional functionally graded composite structures: a review[J]. Composite Structures, 2020, 236: 111837. doi: 10.1016/j.compstruct.2019.111837
    [8] GAYEN D, TIWARI R, CHAKRABORTY D. Static and dynamic analyses of cracked functionally graded structural components: a review[J]. Composites Part B: Engineering, 2019, 173: 106982. doi: 10.1016/j.compositesb.2019.106982
    [9] VAN VINH P, HUY L Q. Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory[J]. Defence Technology, 2022, 18(3): 490-508. doi: 10.1016/j.dt.2021.03.006
    [10] CHO J R. Numerical study on the thermal buckling of functionally graded sandwich plates[J]. Journal of Mechanical Science and Technology, 2023, 37(4): 1913-1922. doi: 10.1007/s12206-023-0328-6
    [11] 仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展, 2010, 40(5): 528-541.

    ZHONG Z, WU L Z, CHEN W Q. Progress in the study on mechanics problems of functionally graded materials and structures[J]. Advances in Mechanics, 2010, 40(5): 528-541(in Chinese).
    [12] REDDY J N, WANG C M. An overview of the relationships between solutions of the classical and shear deformation plate theories[J]. Composites Science and Technology, 2000, 60(12-13): 2327-2335. doi: 10.1016/S0266-3538(00)00028-2
    [13] ABRATE S. Free vibration, buckling, and static deflections of functionally graded plates[J]. Composites Science and Technology, 2006, 66(14): 2383-2394. doi: 10.1016/j.compscitech.2006.02.032
    [14] THAI H T, KIM S E. A review of theories for the modeling and analysis of functionally graded plates and shells[J]. Composite Structures, 2015, 128: 70-86. doi: 10.1016/j.compstruct.2015.03.010
    [15] ZHANG D G, ZHOU Y H. A theoretical analysis of FGM thin plates based on physical neutral surface[J]. Computational Materials Science, 2008, 44(2): 716-720. doi: 10.1016/j.commatsci.2008.05.016
    [16] ZAHARI K, HILALI Y, MESMOUDI S, et al. Review and comparison of thin and thick FGM plate theories using a unified buckling formulation[J]. Structures, 2022, 46: 1545-1560. doi: 10.1016/j.istruc.2022.10.115
    [17] EL MEICHE N, TOUNSI A, ZIANE N, et al. A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate[J]. International Journal of Mechanical Sciences, 2011, 53(4): 237-247. doi: 10.1016/j.ijmecsci.2011.01.004
    [18] REDDY J N. Analysis of functionally graded plates[J]. International Journal for Numerical Methods in Engineering, 2000, 47(1-3): 663-684. doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
    [19] SHAHRJERDI A, MUSTAPHA F, BAYAT M, et al. Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory[J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2195-2209. doi: 10.1007/s12206-011-0610-x
    [20] EL-HAINA F, BAKORA A, BOUSAHLA A A, et al. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates[J]. Structural Engineering and Mechanics, 2017, 63(5): 585-595.
    [21] JAVAHERI R, ESLAMI M R. Thermal buckling of functionally graded plates[J]. AIAA Journal, 2002, 40(1): 162-169. doi: 10.2514/2.1626
    [22] 夏巍, 赵东伟, 冯宇鹏. 基于Mindlin横剪变形理论的功能梯度板热屈曲分析[J]. 应用力学学报, 2016, 33(1): 13-18.

    XIA W, ZHAO D W, FENG Y P. Thermal buckling analysis of functionally graded plates based on Mindlin transverse shear deformable theory[J]. Chinese Journal of Applied Mechanics, 2016, 33(1): 13-18(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  91
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-12
  • 录用日期:  2023-12-29
  • 网络出版日期:  2024-01-19
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答