留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字孪生驱动的转子装配及不平衡分布

吴法勇 王维斌 陈雪骑 马艳红 洪杰

吴法勇,王维斌,陈雪骑,等. 数字孪生驱动的转子装配及不平衡分布[J]. 北京航空航天大学学报,2025,51(12):4061-4071 doi: 10.13700/j.bh.1001-5965.2023.0659
引用本文: 吴法勇,王维斌,陈雪骑,等. 数字孪生驱动的转子装配及不平衡分布[J]. 北京航空航天大学学报,2025,51(12):4061-4071 doi: 10.13700/j.bh.1001-5965.2023.0659
WU F Y,WANG W B,CHEN X Q,et al. Rotor assembly and unbalance distribution driven by digital twins[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4061-4071 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0659
Citation: WU F Y,WANG W B,CHEN X Q,et al. Rotor assembly and unbalance distribution driven by digital twins[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4061-4071 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0659

数字孪生驱动的转子装配及不平衡分布

doi: 10.13700/j.bh.1001-5965.2023.0659
基金项目: 

国家自然科学基金(52205082);国家科技重大专项(2017-Ⅰ-0008-0009);航空发动机及燃气轮机基础科学中心项目(P2021-A-Ⅰ-002-002)

详细信息
    通讯作者:

    E-mail:chenxueqi@buaa.edu.cn

  • 中图分类号: V263.2

Rotor assembly and unbalance distribution driven by digital twins

Funds: 

National Natural Science Foundation of China (52205082); National Science and Technology Major Project (2017-Ⅰ-0008-0009); Science Center for Gas Turbine Project (P2021-A-Ⅰ-002-002)

More Information
  • 摘要:

    针对先进航空发动机转子数字装配和不平衡分布控制问题,提出了转子不平衡分布数字孪生模型的建模方法。开展了构件装配参数对转子不平衡分布状态影响的敏感度评估,判定出大质量构件的静不平衡和位于转子中部构件端面跳动是影响转子不平衡分布优劣的关键因素。基于数据融合方法,结合某大涵道比发动机核心机转子多台次装配统计数据,成功识别并修正了该转子不平衡分布数字孪生模型中关键参数的阈值,为进一步开展转子结构状态控制和动力响应预测提供了模型基础。

     

  • 图 1  构件形位公差与不平衡分布

    Figure 1.  Component geometric tolerances and unbalanced distribution

    图 2  构件堆叠过程相对位置关系示意图

    Figure 2.  Schematic diagram of relative position relationship during component stacking process

    图 3  某大涵道比发动机核心机转子构件组成

    P1—1-2级盘;P2—3级盘轴;P3—4-9级盘;P4—篦齿盘;P5—鼓筒轴;P6—封严盘;P7—涡轮盘;P8—后轴。

    Figure 3.  Composition of rotor components of a large bypass ratio core engine

    图 4  核心机转子装配过程

    Figure 4.  Assembly process of core engine rotor

    图 5  压气机转子坐标系

    Figure 5.  Coordinate system of compressor rotor

    图 6  涡轮转子坐标系

    Figure 6.  Coordinate system of turbine rotor

    图 7  基于支点连线的旋转坐标系

    Figure 7.  Coordinate system of rotation based on bearings

    图 8  转子构件旋转惯性载荷在转子内的分布

    Figure 8.  Distribution of rotational inertia load of components within rotor

    图 9  针对特定输入/输出参数的样本分布

    Figure 9.  Sample distribution for specific input and output parameters

    图 10  转子不平衡分布受构件不平衡影响的敏感度

    Figure 10.  Sensitivity of rotor unbalance distribution affected by component unbalance

    图 11  转子结构状态受构件形位公差影响的敏感度

    Figure 11.  Sensitivity of rotor structure state affected by component shape and position tolerances

    图 12  关键构件不平衡参数统计结果

    Figure 12.  Statistical results of unbalanced parameters of key components

    图 13  关键构件形位公差参数统计结果

    Figure 13.  Statistical results of geometric tolerance parameters of key components

    表  1  关键构件装配参数测量值统计值

    Table  1.   Statistical measurement values of key component assembly parameters

    构件 平均值/(g·mm) 极限值/(g·mm) 最大值/(g·mm) ${\mu _{{\text{un}}}}$/%
    静不
    平衡
    1-2级盘 447 895 892 −0.6
    4-9级盘 1964 3858 4679 41.8
    涡轮盘 231 566 508 −25.3
    构件 平均值/mm 极限值/mm 最大值/mm ${\mu _{{\text{un}}}}$/%
    端面
    跳动
    鼓筒轴 2.64×10−3 6.00×10−3 7.70×10−3 64.4
    封严盘 1.62×10−3 4.53×10−3 8.00×10−3 214.9
    下载: 导出CSV
  • [1] 洪杰, 马艳红, 张大义. 航空燃气轮机总体结构设计与动力学分析[M]. 北京: 北京航空航天大学出版社, 2014.

    HONG J, MA Y H, ZHANG D Y. Overall structural design and dynamic analysis of aviation gas turbine[M]. Beijing: Beihang University Press, 2014(in Chinese).
    [2] 宋兆泓. 航空发动机典型故障分析[M]. 北京: 北京航空航天大学出版社, 1993.

    SONG Z H. Typical fault analysis of aero-engine[M]. Beijing: Beihang University Press, 1993(in Chinese).
    [3] ZHANG C, SUN Q C, SUN W, et al. Performance-oriented digital twin assembly of high-end equipment: a review[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(11): 4723-4748.
    [4] ZHANG C, SUN Q C, SUN W, et al. A construction method of digital twin model for contact characteristics of assembly interface[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(9): 2685-2699.
    [5] CHEN T, LI C H, XIAO H, et al. A review of digital twin intelligent assembly technology and application for complex mechanical products[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(9): 4013-4033.
    [6] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.

    TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18(in Chinese).
    [7] ATTARAN M, CELIK B G. Digital twin: benefits, use cases, challenges, and opportunities[J]. Decision Analytics Journal, 2023, 6: 100165. doi: 10.1016/j.dajour.2023.100165
    [8] JONES D, SNIDER C, NASSEHI A, et al. Characterising the digital twin: a systematic literature review[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 29: 36-52. doi: 10.1016/j.cirpj.2020.02.002
    [9] TAO F, CHENG J F, QI Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9): 3563-3576.
    [10] YI Y, YAN Y H, LIU X J, et al. Digital twin-based smart assembly process design and application framework for complex products and its case study[J]. Journal of Manufacturing Systems, 2021, 58: 94-107. doi: 10.1016/j.jmsy.2020.04.013
    [11] SÖDERBERG R, WÄRMEFJORD K, CARLSON J S, et al. Toward a digital twin for real-time geometry assurance in individualized production[J]. CIRP Annals, 2017, 66(1): 137-140. doi: 10.1016/j.cirp.2017.04.038
    [12] MU X K, WANG Y L, YUAN B, et al. A New assembly precision prediction method of aeroengine high-pressure rotor system considering manufacturing error and deformation of parts[J]. Journal of Manufacturing Systems, 2021, 61: 112-124. doi: 10.1016/j.jmsy.2021.08.010
    [13] 李志刚, 张直明. 不平衡质量的大小和分布对柔性转子-轴承系统稳定性的影响[J]. 振动与冲击, 1997, 16(1): 15-19.

    LI Z G, ZHANG Z M. The effect of magnitude and distribution of unbalance on stability of flexible rotor journal bearing system[J]. Journal of Vibration and Shock, 1997, 16(1): 15-19(in Chinese).
    [14] 李录平, 邹新元, 晋风华. 柔性转子的不平衡分布对摩擦振动行为的影响分析[J]. 动力工程, 2005, 25(6): 757-760.

    LI L P, ZOU X Y, JIN F H. Influence of unbalance distribution on frictional vibration behavior of flexible rotors[J]. Power Engineering, 2005, 25(6): 757-760(in Chinese).
    [15] 郝建山, 韩磊, 张智伟, 等. 分布多质量转子系统的不平衡响应特征[J]. 机械设计与制造, 2006(7): 34-36. doi: 10.3969/j.issn.1001-3997.2006.07.015

    HAO J S, HAN L, ZHANG Z W, et al. Unbalance response characteristics of distributed multi-mass rotor system[J]. Machinery Design & Manufacture, 2006(7): 34-36(in Chinese). doi: 10.3969/j.issn.1001-3997.2006.07.015
    [16] 董惠敏, 张安师, 舒浩, 等. 转子分布不平衡和轴承特性参数同时辨识方法[J]. 哈尔滨工业大学学报, 2022, 54(7): 128-135.

    DONG H M, ZHANG A S, SHU H, et al. Simultaneous identification method of rotor distributed unbalance and bearing characteristic parameters[J]. Journal of Harbin Institute of Technology, 2022, 54(7): 128-135(in Chinese).
    [17] 赵立, 张昊随, 柳亦兵, 等. 存在轴向分布不平衡质量多盘拉杆转子非线性动力学特性[J]. 噪声与振动控制, 2022, 42(4): 74-79.

    ZHAO L, ZHANG H S, LIU Y B, et al. Nonlinear dynamic characteristics of multi-disc rod fastening rotor with axial unbalance mass distribution[J]. Noise and Vibration Control, 2022, 42(4): 74-79(in Chinese).
    [18] 洪杰, 杨哲夫, 孙博, 等. 局部旋转惯性对转子系统动力特性的影响[J]. 航空动力学报, 2022, 37(4): 673-683.

    HONG J, YANG Z F, SUN B, et al. Influence of local rotary inertia on the dynamic properties of rotor systems[J]. Journal of Aerospace Power, 2022, 37(4): 673-683(in Chinese).
    [19] 洪杰, 闫琦, 丰少宝, 等. 界面连接多盘转子旋转惯性模型及动力响应特性[J]. 航空动力学报, 2022, 37(5): 897-908.

    HONG J, YAN Q, FENG S B, et al. Rotational inertia model and dynamic response characteristics of multi-disk rotor system with interface[J]. Journal of Aerospace Power, 2022, 37(5): 897-908(in Chinese).
    [20] 刘寒, 陈雪骑, 李超, 等. 转子惯性主轴倾斜分布力学模型及其影响因素分析[C]//第十届中国航空学会青年科技论坛. 北京: 科学普及出版社, 2022: 869-876.

    LIU H, CHEN X Q, LI C, et al. Mechanical model and analysis of influencing factors for the tilting distribution of the inertial spindle of rotor[C]// Proceedings of the 10th China Aviation Society Youth Science and Technology Forum. Beijing: Popular Science Press, 2022: 869-876(in Chinese).
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  583
  • HTML全文浏览量:  156
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-12
  • 录用日期:  2023-11-03
  • 网络出版日期:  2023-11-13
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答