留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽车路面附着系数融合观测方法

雍加望 董懿瑶 李岩松 陈艳艳 冯能莲

雍加望,董懿瑶,李岩松,等. 汽车路面附着系数融合观测方法[J]. 北京航空航天大学学报,2025,51(12):4169-4177 doi: 10.13700/j.bh.1001-5965.2023.0667
引用本文: 雍加望,董懿瑶,李岩松,等. 汽车路面附着系数融合观测方法[J]. 北京航空航天大学学报,2025,51(12):4169-4177 doi: 10.13700/j.bh.1001-5965.2023.0667
YONG J W,DONG Y Y,LI Y S,et al. Fusion method for automobile tire-road friction coefficient observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4169-4177 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0667
Citation: YONG J W,DONG Y Y,LI Y S,et al. Fusion method for automobile tire-road friction coefficient observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4169-4177 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0667

汽车路面附着系数融合观测方法

doi: 10.13700/j.bh.1001-5965.2023.0667
基金项目: 

国家自然科学基金(52002009);北京市自然科学基金(3222003) ;汽车安全与节能国家重点实验室开放基金(KF2010)

详细信息
    通讯作者:

    E-mail:yongjw@bjut.edu.cn

  • 中图分类号: U461.1

Fusion method for automobile tire-road friction coefficient observation

Funds: 

National Natural Science Foundation of China (52002009); Beijing Natural Science Foundation (3222003); The State Key Laboratory of Automotive Safety and Energy (KF2010)

More Information
  • 摘要:

    路面附着系数(TRFC)是影响汽车行驶稳定性与动力学控制的关键因素,而采用非线性模型的无迹卡尔曼滤波(UKF)-TRFC观测器在车辆起步或路面条件发生突变时收敛较慢,采用线性模型的强跟踪卡尔曼滤波(STKF)-TRFC观测器在较大侧向加速度工况下精度显著降低。因此,提出一种基于UKF和STKF融合的TRFC观测方法。建立面向控制的线性二自由度和非线性三自由度车辆模型、Dugoff轮胎模型;基于线性车辆模型并引入时变渐消因子,设计了STKF-TRFC观测器;基于非线性车辆模型和轮胎模型建立UKF-TRFC观测器;探索轮胎侧向线性区域与非线性区域之间的临界点,在临界区域利用渐消记忆加权最小二乘法对2种观测器结果进行融合。硬件在环仿真试验结果表明:所提方法对车速与路面条件变化表现出较强的鲁棒性与精确性,相比单一STKF-TRFC观测器和UKF-TRFC观测器,其平均绝对误差最高分别降低了94.9%和78.1%,其均方根误差最高分别降低了59.2%和56.9%。

     

  • 图 1  二自由度车辆模型[21]

    Figure 1.  Two-DOF vehicle model[21]

    图 2  三自由度车辆模型[22]

    Figure 2.  Three-DOF vehicle model[22]

    图 3  TRFC融合观测方法流程

    Figure 3.  Flow of TRFC fusion observation method

    图 4  HIL系统

    Figure 4.  HIL system

    图 5  HIL系统软硬件及接口

    Figure 5.  Sofware, hardware and interface of the HIL system

    图 6  定车速定路面附着系数HIL测试结果

    Figure 6.  HIL test results under constant speed and tire-road friction coefficient

    图 7  变车速定路面附着系数HIL测试结果

    Figure 7.  HIL test results under variable speed and constant tire-road friction coefficient

    图 8  定车速变路面附着系数HIL测试结果

    Figure 8.  HIL test results under constant speed and variable tire-road friction coefficient

    图 9  变车速变路面附着系数HIL测试结果

    Figure 9.  HIL test results under variable speed and tire-road friction coefficient

    表  1  仿真车辆模型参数

    Table  1.   Simulate vehicle model parameters

    参数 数值
    车身绕z轴转动惯量Iz/(kg·m2) 700
    车辆质量m/kg 600
    质心距离前轴的距离b/m 1
    质心距离后轴的距离a/m 1.26
    前后轴距l/m 2.26
    车轮有效滚动半径re/m 0.37
    质心高度hg/m 0.45
    轮距wb/m 1.5
    下载: 导出CSV

    表  2  观测结果平均绝对误差统计

    Table  2.   Statistics of average absolute error of observation results

    工况 平均绝对误差 误差对比/%
    STKF-TRFC UKF-TRFC 本文融合方法 本文融合方法与STKF-TRFC 本文融合方法与UKF-TRFC
    定车速定路面 0.00313 0.00034 0.00016 −94.9 −52.9
    变车速定路面 0.01351 0.00183 0.00169 −87.5 −7.7
    定车速变路面 0.00659 0.00152 0.00062 −90.6 −59.2
    变车速变路面 0.01751 0.00687 0.00303 −82.7 −55.9
    下载: 导出CSV

    表  3  观测结果均方根误差统计

    Table  3.   Statistics of root mean square error of observation results

    工况 均方根误差 误差对比/%
    STKF-TRFC UKF-TRFC 本文融合方法 本文融合方法与STKF-TRFC 本文融合方法与UKF-TRFC
    定车速定路面 0.00475 0.00308 0.00261 −55.1 −15.3
    变车速定路面 0.01721 0.00692 0.00674 −60.8 −2.7
    定车速变路面 0.01574 0.01323 0.01234 −21.6 −6.7
    变车速变路面 0.03085 0.02286 0.00985 −78.1 −56.9
    下载: 导出CSV
  • [1] 李岩松. 汽车自适应多级制动AEB控制策略研究[D]. 北京: 北京工业大学, 2022.

    LI Y S. Research on AEB control strategy of vehicle adaptive multi-stage braking[D]. Beijing : Beijing University of Technology, 2022(in Chinese).
    [2] 王震坡, 丁晓林, 张雷. 四轮轮毂电机驱动电动汽车驱动防滑控制关键技术综述[J]. 机械工程学报, 2019, 55(12): 99-120. doi: 10.3901/JME.2019.12.099

    WANG Z P, DING X L, ZHANG L. Overview on key technologies of acceleration slip regulation for four-wheel-independently-actuated electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(12): 99-120(in Chinese). doi: 10.3901/JME.2019.12.099
    [3] KHALEGHIAN S, EMAMI A, TAHERI S. A technical survey on tire-road friction estimation[J]. Friction, 2017, 5(2): 123-146. doi: 10.1007/s40544-017-0151-0
    [4] ALBINSSON A, BRUZELIUS F, JACOBSON B, et al. Design of tyre force excitation for tyre–road friction estimation[J]. Vehicle System Dynamics, 2017, 55(2): 208-230. doi: 10.1080/00423114.2016.1251598
    [5] SHAO L, JIN C, EICHBERGER A, et al. Grid search based tire-road friction estimation[J]. IEEE Access, 2020, 8: 81506-81525. doi: 10.1109/ACCESS.2020.2991792
    [6] 余卓平, 曾德全, 熊璐, 等. 基于激光雷达的无人车路面附着系数估计[J]. 华中科技大学学报(自然科学版), 2019, 47(7): 124-127.

    YU Z P, ZENG D Q, XIONG L, et al. Road adhesion coefficient estimation for unmanned vehicle based on lidar[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(7): 124-127(in Chinese).
    [7] 方剑梅. 基于车路协同的路面-轮胎间附着系数估计及应用[D]. 西安: 长安大学, 2022.

    FANG J M. Estimation and application of adhesion coefficient between pavement and tire based on vehicle-road coordination[D]. Xi’an: Changan University, 2022(in Chinese).
    [8] 何中正. 基于多传感器数据融合的路面附着系数估计[D]. 长春: 吉林大学, 2021.

    HE Z Z. Estimation of pavement adhesion coefficient based on multi-sensor data fusion[D]. Changchun: Jilin University, 2021(in Chinese).
    [9] GUO H Y, ZHAO X, LIU J, et al. A fusion estimation of the peak tire–road friction coefficient based on road images and dynamic information[J]. Mechanical Systems and Signal Processing, 2023, 189: 110029. doi: 10.1016/j.ymssp.2022.110029
    [10] LENG B, JIN D, XIONG L, et al. Estimation of tire-road peak adhesion coefficient for intelligent electric vehicles based on camera and tire dynamics information fusion[J]. Mechanical Systems and Signal Processing, 2021, 150: 107275. doi: 10.1016/j.ymssp.2020.107275
    [11] HEIDFELD H, SCHÜNEMANN M, KASPER R. UKF-based state and tire slip estimation for a 4WD electric vehicle[J]. Vehicle System Dynamics, 2020, 58(10): 1479-1496. doi: 10.1080/00423114.2019.1648836
    [12] CHEN L, LUO Y G, BIAN M Y, et al. Estimation of tire-road friction coefficient based on frequency domain data fusion[J]. Mechanical Systems and Signal Processing, 2017, 85: 177-192. doi: 10.1016/j.ymssp.2016.08.006
    [13] 张雷, 关可人, 丁晓林, 等. 基于图像识别与动力学融合的路面附着系数估计方法[J]. 汽车工程, 2023, 45(7): 1222-1234.

    ZHANG L, GUAN K R, DING X L, et al. Tire-road friction estimation method based on image recognition and dynamics fusion[J]. Automotive Engineering, 2023, 45(7): 1222-1234(in Chinese).
    [14] WANG X, GU L, DONG M M, et al. State estimation of tire-road friction and suspension system coupling dynamic in braking process and change detection of road adhesive ability[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236(6): 1170-1187. doi: 10.1177/09544070211035298
    [15] 王其东, 刘伟, 陈无畏, 等. 基于路面识别的汽车稳定系统滑模控制[J]. 汽车工程, 2018, 40(1): 82-90.

    WANG Q D, LIU W, CHEN W W, et al. Sliding mode control of vehicle electronic stability program based on road identification[J]. Automotive Engineering, 2018, 40(1): 82-90(in Chinese).
    [16] HU J Q, RAKHEJA S, ZHANG Y M. Real-time estimation of tire-road friction coefficient based on lateral vehicle dynamics[J]. Journal of Automobile Engineering, 2020, 234(10-11): 2444-2457. doi: 10.1177/0954407020929233
    [17] LIU Y H, LI T, YANG Y Y, et al. Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm[J]. Mechanical Systems and Signal Processing, 2017, 88: 25-35. doi: 10.1016/j.ymssp.2016.07.024
    [18] 李绪龙. 基于路面附着系数的汽车防碰撞控制算法研究[D]. 合肥: 合肥工业大学, 2018.

    LI X L. Research on vehicle anti-collision control algorithm based on pavement adhesion coefficient[D]. Hefei: Hefei University of Technology, 2018(in Chinese).
    [19] 查云飞, 吕小龙, 陈慧勤, 等. 基于路面附着系数估计的车辆轨迹跟踪控制[J]. 汽车工程, 2023, 45(6): 1010-1021.

    ZHA Y F, LÜ X L, CHEN H Q, et al. Vehicle trajectory tracking control based on road adhesion coefficient estimation[J]. Automotive Engineering, 2023, 45(6): 1010-1021(in Chinese).
    [20] RASOL M, SCHMIDT F, IENTILE S. FriC-PM: machine learning-based road surface friction coefficient predictive model using intelligent sensor data[J]. Construction and Building Materials, 2023, 370: 130567. doi: 10.1016/j.conbuildmat.2023.130567
    [21] 丁能根. 汽车主动控制系统中参数估计的方法与应用[M]. 北京: 北京航空航天大学出版社, 2013.

    DING N G. Method and application of parameter estimation in automobile active control system[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2013(in Chinese).
    [22] 雍加望, 李岩松, 冯能莲, 等. 基于ESHB系统的自适应自动紧急制动控制策略[J]. 汽车安全与节能学报, 2022, 13(2): 300-308.

    YONG J W, LI Y S, FENG N L, et al. Adaptive automatic emergency braking control strategy based on an ESHB system[J]. Journal of Automotive Safety and Energy, 2022, 13(2): 300-308(in Chinese).
    [23] 李刚, 解瑞春, 宗长富, 等. 基于强跟踪容积卡尔曼滤波的车辆行驶状态估计[J]. 汽车技术, 2015(9): 53-58.

    LI G, XIE R C, ZONG C F, et al. Research on vehicle driving state estimation based on strong tracking cubature Kalman filter[J]. Automobile Technology, 2015(9): 53-58(in Chinese).
    [24] DU Z L, LI X M. Strong tracking Tobit Kalman filter with model uncertainties[J]. International Journal of Control, Automation and Systems, 2019, 17(2): 345-355. doi: 10.1007/s12555-017-0655-4
    [25] YONG J W, GAO F, DING N G, et al. Design and validation of an electro-hydraulic brake system using hardware-in-the-loop real-time simulation[J]. International Journal of Automotive Technology, 2017, 18(4): 603-612. doi: 10.1007/s12239-017-0060-2
    [26] 李凌峰, 宫明辉, 乌江. 采用多模模型的锂离子电池荷电状态联合估计算法[J]. 西安交通大学学报, 2021, 55(1): 78-85.

    LI L F, GONG M H, WU J. Joint estimation algorithm for state of charge of Li-ion battery with multi-mode model[J]. Journal of Xi’an Jiaotong University, 2021, 55(1): 78-85(in Chinese).
    [27] JULIER S, UHLMANN J, DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482. doi: 10.1109/9.847726
    [28] 李学鋆, 章菊. 考虑路面附着系数和车速的AFS可变传动比设计[J]. 汽车安全与节能学报, 2020, 11(3): 329-336.

    LI X Y, ZHANG J. Design of AFS variable steering ratio considering road adhesion coefficient and vehicle speed[J]. Journal of Automotive Safety and Energy, 2020, 11(3): 329-336(in Chinese).
    [29] 吴晓建. 双模式互联悬架与主动前轮转向集成控制研究[D]. 长沙: 湖南大学, 2018.

    WU X J. Research on integrated control of dual-mode interconnected suspension and active front wheel steering[D]. Changsha: Hunan University, 2018(in Chinese).
    [30] 林棻, 王少博, 赵又群, 等. 基于改进Keras模型的路面附着系数估计[J]. 机械工程学报, 2021, 57(12): 74-86. doi: 10.3901/JME.2021.12.074

    LIN F, WANG S B, ZHAO Y Q, et al. Road friction coefficient estimation based on improved keras model[J]. Journal of Mechanical Engineering, 2021, 57(12): 74-86(in Chinese). doi: 10.3901/JME.2021.12.074
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  106
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 录用日期:  2024-01-19
  • 网络出版日期:  2024-01-23
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答