留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度六边形可变形翼肋结构设计及气动性能分析

李志强 王阳 辛立彪

李志强,王阳,辛立彪. 梯度六边形可变形翼肋结构设计及气动性能分析[J]. 北京航空航天大学学报,2025,51(12):4003-4012 doi: 10.13700/j.bh.1001-5965.2023.0669
引用本文: 李志强,王阳,辛立彪. 梯度六边形可变形翼肋结构设计及气动性能分析[J]. 北京航空航天大学学报,2025,51(12):4003-4012 doi: 10.13700/j.bh.1001-5965.2023.0669
LI Z Q,WANG Y,XIN L B. Structural design and aerodynamic performance analysis of gradient hexagonal deformable wing ribs[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4003-4012 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0669
Citation: LI Z Q,WANG Y,XIN L B. Structural design and aerodynamic performance analysis of gradient hexagonal deformable wing ribs[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4003-4012 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0669

梯度六边形可变形翼肋结构设计及气动性能分析

doi: 10.13700/j.bh.1001-5965.2023.0669
基金项目: 

国家自然科学基金(12272255,12302478);山西省基础研究计划(202203021211134);山西省科技创新人才团队(领军)专项(202204051002006);山西省关键核心技术和共性技术研发攻关专项(2020XXX017)

详细信息
    通讯作者:

    E-mail:xinlibiao@tyut.edu.cn

  • 中图分类号: V224

Structural design and aerodynamic performance analysis of gradient hexagonal deformable wing ribs

Funds: 

National Natural Science Foundation of China (12272255,12302478); Basic Research Program of Shanxi Province (202203021211134); Shanxi Province Science and Technology Innovation Talent Team (Leading) Special Project (202204051002006); Key Core Technologies and Common Technologies Research and Development Special Project of Shanxi Province (2020XXX017)

More Information
  • 摘要:

    由于可变形机翼可满足不同工况下飞机气动性能需求,已被广泛应用于各类飞行器中。针对现有可变形机翼存在不能实现连续变形、变形幅度小、变形外轮廓不圆滑等问题,设计了一种梯度六边形结构填充的机翼结构及内部驱动装置,并给出了对应控制算法,分析了该可变形机翼可实现的2种典型变形模式:机翼尾缘弯曲变形和翼型仿制变形,具体分析了2种变形模式下翼型的气动性能,并与已有翼型气动性能进行比较,充分说明了所设计机翼的优势。

     

  • 图 1  梯度六边形翼肋结构

    Figure 1.  Gradient hexagonal rib structure

    图 2  中间层六边形结构

    Figure 2.  The hexagonal structure of the middle layer

    图 3  上下端第二层六边形结构

    Figure 3.  The second layer of hexagonal structure at the upper and lower ends

    图 4  程序运行框图

    Figure 4.  Program operation diagram

    图 5  中间层及上端六边形结构点位

    Figure 5.  The middle layer and the upper hexagonal structure point

    图 6  机翼尾缘弯曲对比

    Figure 6.  Comparison of wing tail edge bending

    图 7  机翼尾缘弯曲变形实际效果

    Figure 7.  Actual effect of wing tail edge bending deformation

    图 8  机翼尾缘弯曲气动性能对比

    Figure 8.  Comparison of aerodynamic performance of wing tail edge bending

    图 9  翼型对比

    Figure 9.  Comparison of airfoil

    图 10  翼型仿制气动性能对比

    Figure 10.  Comparison of aerodynamic performance of airfoil imitation

    翼型填充流程

    Airfoil filling process

    表  1  机翼尾缘弯曲参数

    Table  1.   Parameters of wing tail edge bending

    机翼尾缘弯曲 起始
    n1
    终止
    n2
    切分
    段数n3
    目标
    函数f(x)
    终止点
    (x0,y0)
    10°(J-10) 26 30 100 y=0.008x2 (11,0.968)
    20°(J-20) 26 60 100 y=0.0165x2 (11,1.9965)
    30°(J-30) 26 30 100 y=0.0262x2 (11,3.1702)
    下载: 导出CSV

    表  2  仿制翼型参数

    Table  2.   Parameters of imitation airfoil

    起始段n1 终止段n2 切分段数n3 目标函数f(x) 终止点(x0,y0)
    2 43 100 y=−3.906×10−8x4+2.015×10−5x30.0043×10−8x2+0.0169x+0.0829 (11,3.1702)
    下载: 导出CSV
  • [1] 孙杨, 昌敏, 白俊强. 变形机翼飞行器发展综述[J]. 无人系统技术, 2021, 4(3): 65-77.

    SUN Y, CHANG M, BAI J Q. Review of morphing wing aircraft[J]. Unmanned Systems Technology, 2021, 4(3): 65-77(in Chinese).
    [2] 祝连庆, 孙广开, 李红, 等. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14): 28-42.

    ZHU L Q, SUN G K, LI H, et al. Intelligent and flexible morphing wing technology: a review[J]. Journal of Mechanical Engineering, 2018, 54(14): 28-42(in Chinese).
    [3] 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443.

    BAI P, CHEN Q, XU G W, et al. Development status and prospects of key technologies for intelligent deformable aircraft[J]. Journal of Aerodynamics, 2019, 37(3): 426-443(in Chinese).
    [4] WEISSHAAR T A. Morphing aircraft technology-new shapes for aircraft design: RTO-MP-AVT-141[R]. Brussels: NATO, 2006.
    [5] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [6] 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. doi: 10.7527/S1000-6893.2022.27449

    RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449(in Chinese). doi: 10.7527/S1000-6893.2022.27449
    [7] PHAN H V, PARK H C. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot[J]. Bioinspiration & Biomimetics, 2018, 13(3): 036009.
    [8] WALKER S M, THOMAS A L R, TAYLOR G K. Deformable wing kinematics in free-flying hoverflies[J]. Journal of the Royal Society, Interface, 2010, 7(42): 131-142. doi: 10.1098/rsif.2009.0120
    [9] 王军, 张震, 李富强, 等. 仿生扑翼无人系统研究综述[J]. 智能系统学报, 2023, 18(3): 410-439.

    WANG J, ZHANG Z, LI F Q, et al. A review of the research on bionic flapping-wing unmanned systems[J]. CAAI Transactions on Intelligent Systems, 2023, 18(3): 410-439(in Chinese).
    [10] PHAN H V, PARK H C. Insect-inspired, tailless, hover-capable flapping-wing robots: recent progress, challenges, and future directions[J]. Progress in Aerospace Sciences, 2019, 111: 100573.
    [11] XIAO S J, HU K, HUANG B X, et al. A review of research on the mechanical design of hoverable flapping wing micro-air vehicles[J]. Journal of Bionic Engineering, 2021, 18(6): 1235-1254.
    [12] PHAN H V, PARK H C. Mechanisms of collision recovery in flying beetles and flapping-wing robots[J]. Science, 2020, 370(6521): 1214-1219. doi: 10.1126/science.abd3285
    [13] 张弘志, 宋笔锋, 孙中超, 等. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报, 2021, 42(2): 024024.

    ZHANG H Z, SONG B F, SUN Z C, et al. Driving mechanism of flapping wing aircraft: review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 024024(in Chinese).
    [14] 年鹏, 宋笔锋, 宣建林, 等. 扑翼飞行器动力系统建模方法[J]. 航空学报, 2021, 42(9): 224646.

    NIAN P, SONG B F, XUAN J L, et al. Modeling method for propulsion system of flapping wing vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224646(in Chinese).
    [15] SEIGLER T M, NEAL D A, BAE J S, et al. Modeling and flight control of large-scale morphing aircraft[J]. Journal of Aircraft, 2007, 44(4): 1077-1087.
    [16] WOODS B K S, FINCHAM J H S, FRISWELL M I. Aerodynamic modelling of the fish bone active camber morphing concept[C]// Proceedings of the Royal Aeronautical Society Conference on Advanced Aero Concepts, Designs and Operations. [S. l: s. n. ], 2014.
    [17] WOODS B K S, DAYYANI I, FRISWELL M I. Fluid/structure-interaction analysis of the fish-bone-active-camber morphing concept[J]. Journal of Aircraft, 2014, 52(1): 307-319.
    [18] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J]. 航空学报, 2009, 30(6): 1028-1034.

    YANG Z C, XIE J. Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1028-1034(in Chinese).
    [19] 冯文正, 于菲, 姜涛, 等. 变后掠角与变翼型厚度机翼的气动特性分析[J]. 飞行力学, 2023, 41(1): 9-13.

    FENG W Z, YU F, JIANG T, et al. Analysis of aerodynamic characteristics of wings with variable sweep angle and variable airfoil thickness[J]. Flight Mechanics, 2023, 41(1): 9-13(in Chinese).
    [20] 辛涛, 李斌. 一种刚柔混合弦向变弯度机翼后缘设计[J]. 兵工学报, 2023, 44(8): 2465-2476.

    XIN T, LI B. A design of the trailing edge of a rigid flexible mixed chord variable curvature wing[J]. Acta Armamentarii, 2023, 44(8): 2465-2476(in Chinese).
    [21] 张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报, 2022, 43(3): 226071.

    ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 226071(in Chinese).
    [22] 张立启, 岳承宇, 赵永辉. 变后掠翼的参变气动弹性建模与分析[J]. 力学学报, 2021, 53(11): 3134-3146. doi: 10.6052/0459-1879-21-275

    ZHANG L Q, YUE C Y, ZHAO Y H. Parameter-varying aeroelastic modeling and analysis for a variable-sweep wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3134-3146 (in Chinese). doi: 10.6052/0459-1879-21-275
    [23] DAI P, YAN B B, HUANG W, et al. Design and aerodynamic performance analysis of a variable-sweep-wing morphing waverider[J]. Aerospace Science and Technology, 2020, 98: 105703. doi: 10.1016/j.ast.2020.105703
    [24] MA T R, FAN Y D, CHANG N, et al. Design of a variable-sweep wing structure with flexible shear skin[J]. Aerospace Systems, 2022, 5(1): 37-46. doi: 10.1007/s42401-021-00123-9
    [25] SUN J, GUAN Q H, LIU Y J, et al. Morphing aircraft based on smart materials and structures: a state-of-the-art review[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(17): 2289-2312. doi: 10.1177/1045389X16629569
    [26] 姜松成, 杨慧, 王岩, 等. 变形翼可调泊松比柔性蒙皮力学特性分析[J]. 航空学报, 2023, 44(13): 227748.

    JIANG S C, YANG H, WANG Y, et al. Analysis of mechanical characteristics of flexible skin with tunable Poisson’s ratio for morphing wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 227748(in Chinese).
    [27] 王元锋, 祝连庆, 何彦霖, 等. 变构型飞行器柔性蒙皮形状光纤重构方法[J]. 中国机械工程, 2023, 34(15): 1873-1880. doi: 10.3969/j.issn.1004-132X.2023.15.012

    WANG Y F, ZHU L Q, HE Y L, et al. Fiber optic reconstruction method for flexible skin shape of deformable aircraft[J]. China Mechanical Engineering, 2023, 34(15): 1873-1880(in Chinese). doi: 10.3969/j.issn.1004-132X.2023.15.012
    [28] POPOV A V, GRIGORIE L T, BOTEZ R, et al. Closed-loop control validation of a morphing wing using wind tunnel tests[J]. Journal of Aircraft, 2010, 47(4): 1309-1317. doi: 10.2514/1.47281
    [29] POPOV A V, GRIGORIE T L, BOTEZ R M, et al. Modeling and testing of a morphing wing in open-loop architecture[J]. Journal of Aircraft, 2010, 47(3): 917-923. doi: 10.2514/1.46480
    [30] BUBERT E, WOODS B K S, KOTHERA C, et al. Design and fabrication of a passive 1-d morphing aircraft skin[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1699-1717. doi: 10.1177/1045389X10378777
    [31] JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[C]//Proceedings of the Smart Structures and Materials 2004. Bellingham: SPIE, 2004: 213-224.
    [32] CRAMER N B, CELLUCCI D W, FORMOSO O B, et al. Elastic shape morphing of ultralight structures by programmable assembly[J]. Smart Materials & Structures, 2019, 28(5): 055006.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  112
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 录用日期:  2024-02-23
  • 网络出版日期:  2024-03-18
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答