留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于注意力特征融合的无人机检测算法

王尔申 张宏轩 徐嵩 于腾丽 雷虹 季善斌

王尔申,张宏轩,徐嵩,等. 基于注意力特征融合的无人机检测算法[J]. 北京航空航天大学学报,2025,51(12):4023-4030 doi: 10.13700/j.bh.1001-5965.2023.0682
引用本文: 王尔申,张宏轩,徐嵩,等. 基于注意力特征融合的无人机检测算法[J]. 北京航空航天大学学报,2025,51(12):4023-4030 doi: 10.13700/j.bh.1001-5965.2023.0682
WANG E S,ZHANG H X,XU S,et al. UAV detection algorithm based on attentional feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4023-4030 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0682
Citation: WANG E S,ZHANG H X,XU S,et al. UAV detection algorithm based on attentional feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4023-4030 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0682

基于注意力特征融合的无人机检测算法

doi: 10.13700/j.bh.1001-5965.2023.0682
基金项目: 

极限环境光电动态测试技术与仪器全国重点实验室开放基金(2023-SYSJJ-04);国家自然科学基金基础科学中心项目(62388101);国家自然科学基金(62173237);天津市城市空中交通系统技术与装备重点实验室开放基金(TJKL-UAM-202305);航空科学基金(20240055054001);辽宁省教育厅科学技术项目(310125011,20240177)

详细信息
    通讯作者:

    E-mail:wanges_2016@126.com

  • 中图分类号: TP391.4

UAV detection algorithm based on attentional feature fusion

Funds: 

Fund of State Key Laboratory of Extreme Environment Optoelectronic Dynamic Measurement Technology and Instrument (2023-SYSJJ-04); National Natural Science Foundation of China-Basic Science Center Program (62388101); National Natural Science Foundation of China (62173237); Fund of Key Laboratory of Technology and Equipment of Tianjin Urban Air Transportation System (TJKL-UAM-202305); Aeronautical Science Foundation of China (20240055054001); Scientific Research Project of Liaoning Education Department (310125011,20240177)

More Information
  • 摘要:

    针对背景与无人机(UAV)颜色相似、目标遮挡重叠等复杂环境条件下,对无人机目标快速精准识别存在的问题,提出一种改进的无人机检测算法STC-YOLOv5。STC-YOLOv5算法的骨干特征提取网络采用Swin Transformer,以增强网络在复杂环境下的鲁棒性;在YOLOv5模型特征融合网络集成卷积注意力模块(CBAM),以增强对无人机目标重要特征的关注并抑制不必要的特征关注;根据无人机的特点优化损失函数,在完整交并比(CIoU)损失函数中引入角度损失、距离损失和形状损失,提高被遮挡无人机目标的识别准确率。在自主建立的无人机飞行数据集上进行实验验证,结果表明:在无人机目标被部分遮挡情况下,改进的STC-YOLOv5算法的平均精度为92.98%,召回率为87.09%,相比于YOLOv5算法分别提高了2.88%、6.03%,能够在复杂环境下对无人机进行快速准确识别。

     

  • 图 1  STC-YOLOv5网络结构

    Figure 1.  STC-YOLOv5 network architecture

    图 2  主干网络结构

    Figure 2.  Backbone network structure

    图 3  特征融合网络结构

    Figure 3.  Structure of feature fusion network

    图 4  无人机数据集部分图像

    Figure 4.  Partial image of UAV dataset

    图 5  网络下载无人机图像

    Figure 5.  Downloading UAV images from the web

    图 6  合成的无人机遮挡图像

    Figure 6.  Synthesized UAV occlusion images

    图 7  无人机检测的mAP和召回率

    Figure 7.  mAP and recall for UAV detection

    图 8  模型检测对比

    Figure 8.  Model detection comparison

    表  1  消融实验结果

    Table  1.   Ablation experiment results

    Swin Transformer CBAM 损失函数 mAP/% R/% F1-score P/%
    90.10 81.06 0.89 98.87
    88.85 81.64 0.90 99.34
    91.15 86.34 0.92 99.10
    89.47 84.46 0.91 99.59
    92.98 87.09 0.93 98.76
    下载: 导出CSV

    表  2  模型复杂度对比

    Table  2.   Comparison of model complexity

    Swin Transformer CBAM 损失函数 参数量 T/s
    7.43×106 2.04
    31.09×106 2.06
    7.61×106 2.02
    7.43×106 2.01
    31.26×106 2.02
    下载: 导出CSV

    表  3  经典目标检测算法检测性能对比

    Table  3.   Detection performance comparison of classical target detection algorithms

    算法 R/% mAP/% F1-score P/% T/s
    Faster R-CNN[2] 69.78 83.35 0.81 95.85 6.68
    Mobilenet-YOLOv4 46.98 72.66 0.63 97.71 3.20
    YOLOv4-tiny 74.59 79.71 0.83 94.76 3.09
    YOLOv4 67.58 80.94 0.79 95.72 3.78
    YOLOv5 81.06 90.10 0.89 98.87 2.04
    本文 87.09 92.98 0.93 98.76 2.02
    下载: 导出CSV

    表  4  YOLOv8检测性能对比

    Table  4.   YOLOv8 detection performance comparison

    算法 R/% mAP/% F1-score P/%
    YOLOv8 88.96 95.55 0.94 99.89
    YOLOv8+CBAM 92.51 95.64 0.95 97.21
    下载: 导出CSV
  • [1] 赵飞, 娄文忠, 冯恒振, 等. 反无人机图像导引头远距空中目标探测技术[J]. 兵工学报, 2023, 44(4): 1023-1033.

    ZHAO F, LOU W Z, FENG H Z, et al. Long-range aerial target detection technology of anti-UAV image guide[J]. Acta Armamentarii, 2023, 44(4): 1023-1033(in Chinese).
    [2] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [4] 杨勇, 王雪松, 张斌. 基于时频检测与极化匹配的雷达无人机检测方法[J]. 电子与信息学报, 2021, 43(3): 509-515. doi: 10.11999/JEIT200768

    YANG Y, WANG X S, ZHANG B. Radar detection of unmanned aerial vehicles based on time-frequency detection and polarization matching[J]. Journal of Electronics & Information Technology, 2021, 43(3): 509-515(in Chinese). doi: 10.11999/JEIT200768
    [5] 虞晓霞, 刘智, 耿振野, 等. 一种基于深度学习的禁飞区无人机目标识别方法[J]. 长春理工大学学报(自然科学版), 2018, 41(3): 95-101.

    YU X X, LIU Z, GENG Z Y, et al. A deep learning-based target recognition method for UAVs in no-fly zones[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(3): 95-101(in Chinese).
    [6] SHINDE C, LIMA R, DAS K. Multi-view geometry and deep learning based drone detection and localization[C]//Proceedings of the 5th Indian Control Conference. Piscataway: IEEE Press, 2019: 289-294.
    [7] HU Y Y, WU X J, ZHENG G D, et al. Object detection of UAV for anti-UAV based on improved YOLOv3[C]//Proceedings of the Chinese Control Conference. Piscataway: IEEE Press, 2019: 8386-8390.
    [8] 崔艳鹏, 王元皓, 胡建伟. 一种改进YOLOv3的动态小目标检测方法[J]. 西安电子科技大学学报, 2020, 47(3): 1-7.

    CUI Y P, WANG Y H, HU J W. An improved dynamic small target detection method for YOLOv3[J]. Journal of Xi’an Electronic Science and Technology University, 2020, 47(3): 1-7(in Chinese).
    [9] 刘芳, 浦昭辉, 张帅超. 基于注意力特征融合的无人机多目标跟踪算法[J]. 控制与决策, 2023, 38(2): 345-353.

    LIU F, PU Z H, ZHANG S C. UAV multi-target tracking algorithm based on attention feature fusion[J]. Control and Decision, 2023, 38(2): 345-353(in Chinese).
    [10] 杨帅东, 谌海云, 许瑾, 等. 利用深度卷积特征的无人机视觉跟踪[J]. 控制与决策, 2023, 38(9): 2496-2504.

    YANG S D, CHEN H Y, XU J, et al. UAV visual tracking using deep convolutional features[J]. Control and Decision, 2023, 38(9): 2496-2504(in Chinese).
    [11] 张瑞鑫, 黎宁, 张夏夏, 等. 基于优化CenterNet的低空无人机检测方法[J]. 北京航空航天大学学报, 2022, 48(11): 2335-2344.

    ZHANG R X, LI N, ZHANG X X, et al. Low-altitude UAV detection method based on optimized CenterNet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2335-2344(in Chinese).
    [12] 薛珊, 王亚博, 吕琼莹, 等. 基于YOLOX-drone的反无人机系统抗遮挡目标检测算法[J]. 工程科学学报, 2023, 45(9): 1539-1549.

    XUE S, WANG Y B, LV Q Y, et al. Anti-obscurity target detection algorithm for anti-UAS based on YOLOX-drone[J]. Journal of Engineering Science, 2023, 45(9): 1539-1549(in Chinese).
    [13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2023-10-08]. https://arxiv.org/abs/2004.10934?context=eess.
    [14] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [15] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
    [16] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2021: 9992-10002.
    [17] VASWANI A, SHAZEER N, PARMAR N, et a1. Attention is all on need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
    [18] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
    [19] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. [2023-10-08]. https://arxiv.org/pdf/2205.12740.
    [20] DU S J, ZHANG B F, ZHANG P, et al. An improved bounding box regression loss function based on CIOU loss for multi-scale object detection[C]//Proceedings of the IEEE 2nd International Conference on Pattern Recognition and Machine Learning. Piscataway: IEEE Press, 2021: 92-98.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  77
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 录用日期:  2024-01-12
  • 网络出版日期:  2024-04-17
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答