留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GNSS外辐射源雷达空中目标TDOA定位算法评估

谭传瑞 李唐 陈文谦 王峰 杨东凯 吴世玉

谭传瑞,李唐,陈文谦,等. GNSS外辐射源雷达空中目标TDOA定位算法评估[J]. 北京航空航天大学学报,2025,51(12):4268-4278 doi: 10.13700/j.bh.1001-5965.2023.0685
引用本文: 谭传瑞,李唐,陈文谦,等. GNSS外辐射源雷达空中目标TDOA定位算法评估[J]. 北京航空航天大学学报,2025,51(12):4268-4278 doi: 10.13700/j.bh.1001-5965.2023.0685
TAN C R,LI T,CHEN W Q,et al. Evaluation of TDOA based air target localization algorithm using GNSS-based passive radar[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4268-4278 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0685
Citation: TAN C R,LI T,CHEN W Q,et al. Evaluation of TDOA based air target localization algorithm using GNSS-based passive radar[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4268-4278 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0685

GNSS外辐射源雷达空中目标TDOA定位算法评估

doi: 10.13700/j.bh.1001-5965.2023.0685
详细信息
    通讯作者:

    E-mail:wangf.19@163.com

  • 中图分类号: TN958.97

Evaluation of TDOA based air target localization algorithm using GNSS-based passive radar

More Information
  • 摘要:

    对全球导航卫星系统(GNSS)外辐射源雷达空中目标到达时间差(TDOA)定位算法的性能进行评估,推导TDOA定位方程及方程的加权最小二乘解,引入高度角权重模型和信噪比(SNR)权重模型2种定权方案,分析权重模型、卫星数量、几何精度因子对定位误差的影响。进行仿真试验和外场试验,结果表明:与等权模型相比,高度角权重模型、信噪比权重模型均能有效降低TDOA算法的定位误差,高度角权重模型的降低效果略优于信噪比权重模型;对卫星数量的分析表明,定位中使用的卫星数量小于7颗时定位性能随卫星数量的增加而快速提升,但超过7颗后定位性能的提升速度放缓;对几何精度因子的分析表明,几何精度因子与定位误差的均值呈线性正相关。外场试验中对民航客机的最大定位误差为206.30 m、最小定位误差为13.85 m。

     

  • 图 1  TDOA定位算法的几何示意图

    Figure 1.  Geometric schematic of the TDOA localization algorithm

    图 2  定位散点在$ x{O}y $平面的投影

    Figure 2.  Locate the projection of the scattering point in the xOy plane

    图 3  定位误差的协方差与CRLB对比

    Figure 3.  Covariance of positioning error plotted against CRLB

    图 4  定位性能随卫星数量变化曲线

    Figure 4.  Positioning performance versus number of satellites

    图 5  GDOP-定位误差均值散点图及其回归直线

    Figure 5.  GDOP-positioning error mean scatter plot and its regression straight line

    图 6  标准化残差的正态P-P图

    Figure 6.  Normal P-P plot of standardised residuals

    图 7  不同噪声强度下的定位误差

    Figure 7.  Positioning errors at different noise intensities

    图 8  试验场景

    Figure 8.  Test scenarios

    图 9  目标回波的时延-多普勒图像

    Figure 9.  Time-delay-Doppler images of target echoes

    图 10  各组数据的定位误差

    Figure 10.  Positioning error for each data set

    图 11  定位性能随卫星数量的变化曲线

    Figure 11.  Variation curve of positioning performance with the number of satellites

    图 12  GDOP-定位误差均值散点图及其回归直线

    Figure 12.  GDOP-positioning error mean scatter plot and its regression straight line

    图 13  标准化残差的正态P-P图

    Figure 13.  Normal P-P plot of standardised residuals

    图 14  不同权重模型的误差序列均值和标准差

    Figure 14.  Mean and standard deviation of error series for models with different weights

    表  1  仿真条件

    Table  1.   Simulation conditions

    编号 $ x/ $m $ y $/m $ {\textit{z}} $/m
    地面站 0 0 0
    空中目标 833.88 930.84 1067.10
    卫星1 2874701.46 18323941.72 12163715.47
    卫星2 17796907.72 15098203.19 27454679.68
    卫星3 10832994.37 20313279.47 3114663.86
    卫星4 1480434.16 15176177.60 15471755.24
    卫星5 12042034.11 21659654.86 25834343.54
    卫星6 18396103.15 32511284.53 3687283.66
    卫星7 14087596.33 1462340.29 18377118.55
    卫星8 12585913.97 35077823.98 4628896.76
    卫星9 2339303.01 22727493.15 28099180.15
    卫星10 32147874.59 20112733.37 4036209.35
    卫星11 14019148.46 20442049.95 692344.88
    下载: 导出CSV

    表  2  试验所用设备及其性能

    Table  2.   Equipment used for the test and its performance

    设备名称 设备性能
    右旋天线 圆极化天线
    全向天线
    最大增益为5.5 dBi
    左旋天线 圆极化天线
    波束范围为±10°;
    最大增益为10 dBi
    采集器 中频为15.48 MHz
    采样率为64 MHz
    量化位数为8 bit
    计算机 Intel i5-7500 CPU
    16 GB RAM
    下载: 导出CSV

    表  3  每组数据的可见卫星和选星方案数量

    Table  3.   Number of visible satellites and satellite selection programmes per data set

    数据编号 可见卫星数量 选星方案总数
    1 6 22
    2 7 64
    3 11 1816
    4 9 382
    5 6 22
    6 10 848
    7 9 382
    8 10 848
    9 7 64
    下载: 导出CSV
  • [1] GRIFFITHS H D. From a different perspective: principles, practice and potential of bistatic radar[C]//Proceedings of the International Conference on Radar. Piscataway: IEEE Press, 2004: 1-7.
    [2] 万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939-958. doi: 10.12000/JR20143

    WAN X R, YI J X, ZHAN W J, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939-958. doi: 10.12000/JR20143
    [3] MOCCIA A. Bistatic radar: emerging technology[M]. Hoboken: John Wiley & Sons, 2008.
    [4] SLAVOV A, SANDENBERGH S, O’HAGAN D, et al. Multiple FM-based passive bistatic pairs for robust target detection with improved position accuracy[C]//Proceedings of the 23rd International Radar Symposium. Piscataway: IEEE Press, 2022: 332-337.
    [5] MAKSYMIUK R, PŁOTKA M, ABRATKIEWICZ K, et al. 5G network-based passive radar for drone detection[C]//Proceedings of the 24th International Radar Symposium. Piscataway: IEEE Press, 2023: 1-10.
    [6] MARTELLI T, CABRERA O, COLONE F, et al. Exploitation of long coherent integration times to improve drone detection in DVB-S based passive radar[C]//Proceedings of the IEEE Radar Conference. Piscataway: IEEE Press, 2020: 1-6.
    [7] 杨东凯, 谭传瑞, 王峰, 等. 基于高度角随机模型的GNSS外辐射源雷达定位算法[J]. 电子与信息学报, 2024, 46(4): 1373-1381. doi: 10.11999/JEIT230462

    YANG D K, TAN C R, WANG F, et al. Elevation-dependent stochastic localization algorithm for GNSS-based passive radar[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1373-1381 (in Chinese). doi: 10.11999/JEIT230462
    [8] 杨进佩. 基于GPS的无源雷达技术研究[D]. 南京: 南京理工大学, 2006.

    YANG J P. Research on passive radar technology based on GPS[D]. Nanjing: Nanjing University of Science and Technology, 2006 (in Chinese).
    [9] KOCH V, WESTPHAL R. New approach to a multistatic passive radar sensor for air/space defense[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(11): 24-32. doi: 10.1109/62.473409
    [10] BEHAR V, KABAKCHIEV C. Detectability of air targets using bistatic radar based on GPS L5 signals[C]//Proceedings of the 12th International Radar Symposium (IRS). Piscataway: IEEE Press, 2011: 212-217.
    [11] 苗铎, 杨东凯, 许志超, 等. GNSS外辐射源雷达低慢小目标探测概率[J]. 北京航空航天大学学报, 2023, 49(3): 657-664.

    MIAO D, YANG D K, XU Z C, et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 657-664 (in Chinese).
    [12] ZHOU X K, WANG P B, CHEN J, et al. A modified radon Fourier transform for GNSS-based bistatic radar target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 3501805.
    [13] MAHMUD M S, QAISAR S U, LAMBERT A, et al. Demonstration of LEO object detection using GNSS passive radar: a proof of concept[C]//Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS). Piscataway: IEEE Press, 2020: 1556-1562.
    [14] WANG P B, ZHOU X K, FANG Y, et al. GNSS-based passive inverse SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 16: 508-521.
    [15] SANTI F, BUCCIARELLI M, PASTINA D, et al. Spatial resolution improvement in GNSS-based SAR using multistatic acquisitions and feature extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6217-6231. doi: 10.1109/TGRS.2016.2583784
    [16] SANTI F, ANTONIOU M, PASTINA D. Point spread function analysis for GNSS-based multistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 304-308. doi: 10.1109/LGRS.2014.2337054
    [17] FAN X Z, LIU F F, ZHANG T, et al. Passive SAR with GNSS transmitters: latest results and research progress[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway: IEEE Press, 2017: 1043-1046.
    [18] ZHANG L Z, LIU F F, WANG Z Z, et al. Passive GNSS-based SAR data acquisition and real-time preprocessing system[C]//Proceedings of the IEEE International Conference on Signal, Information and Data Processing (ICSIDP). Piscataway: IEEE Press, 2019: 1-4.
    [19] ANTONIOU M, CHERNIAKOV M, MA H. Space-surface bistatic synthetic aperture radar with navigation satellite transmissions: a review[J]. Science China Information Sciences, 2015, 58(6): 1-20.
    [20] MA H, ANTONIOU M, STOVE A G, et al. Maritime moving target localization using passive GNSS-based multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4808-4819. doi: 10.1109/TGRS.2018.2838682
    [21] GOMEZ-DEL-HOYO P, JARABO-AMORES M P, MATA-MOYA D, et al. 2D ground target location using GPS based passive radar[C]//Proceedings of the Signal Processing Symposium (SPSympo). Piscataway: IEEE Press, 202181-86.
    [22] 左燕, 周夏磊, 蒋陶然. 传感器位置误差下外辐射源雷达三维定位代数解算法[J]. 电子与信息学报, 2020, 42(3): 555-562. doi: 10.11999/JEIT190292

    ZUO Y, ZHOU X L, JIANG T R. Algebraic solution for 3D localization of multistatic passive radar in the presence of sensor position errors[J]. Journal of Electronics & Information Technology, 2020, 42(3): 555-562 (in Chinese). doi: 10.11999/JEIT190292
    [23] NOROOZI A, ALI SEBT M. Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1660-1671. doi: 10.1109/TAES.2017.2669558
    [24] 王鼎, 尹洁昕, 吴志东, 等. 一种基于多普勒频率的恒模信号直接定位方法[J]. 航空学报, 2017, 38(9): 321084.

    WANG D, YIN J X, WU Z D, et al. Direct localization method for constant modulus source based on Doppler frequency shifts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 321084 (in Chinese).
    [25] WAX M, KAILATH T. Decentralized processing in sensor arrays[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(5): 1123-1129. doi: 10.1109/TASSP.1985.1164706
    [26] WEISS A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5): 513-516. doi: 10.1109/LSP.2004.826501
    [27] HACK D E, PATTON L K, HIMED B, et al. Detection in passive MIMO radar networks[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2999-3012. doi: 10.1109/TSP.2014.2319776
    [28] SANTI F, PIERALICE F, PASTINA D. Multistatic GNSS-based passive radar for maritime surveillance with long integration times: Experimental results[C]//Proceedings of the IEEE Radar Conference (RadarConf18). Piscataway: IEEE Press, 2018: 1260-1265.
    [29] 卢铭迪. 以卫星信号为外辐射源的直接定位方法研究[D]. 成都: 电子科技大学, 2019.

    LU M D. Research on direct positioning method with satellite signal as external radiation source[D]. Chengdu: University of Electronic Science and Technology of China, 2019 (in Chinese).
    [30] 宋媛媛. 运动单站直接定位技术[D]. 成都: 电子科技大学, 2020.

    SONG Y Y. Direct positioning technology of moving single station[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese).
    [31] 薛文丽. 无源定位中的直接定位技术研究[D]. 成都: 电子科技大学, 2020.

    XUE W L. Research on direct positioning technology in passive positioning[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese).
    [32] 夏楠, 高丹阳, 邢宝辉, 等. 基于外辐射源的空中目标直接定位算法[J]. 通信学报, 2023, 44(6): 117-124. doi: 10.11959/j.issn.1000-436x.2023120

    XIA N, GAO D Y, XING B H, et al. Direct localization algorithm of the aerial target based on external radiation source[J]. Journal on Communications, 2023, 44(6): 117-124 (in Chinese). doi: 10.11959/j.issn.1000-436x.2023120
    [33] 闫攀, 栗强强, 闫会峰. 基于北斗卫星外辐射源的目标直接定位算法[J]. 无线电工程, 2023, 53(2): 410-416. doi: 10.3969/j.issn.1003-3106.2023.02.019

    YAN P, LI Q Q, YAN H F. Direct position determination of moving target using BeiDou satellite external illuminators[J]. Radio Engineering, 2023, 53(2): 410-416 (in Chinese). doi: 10.3969/j.issn.1003-3106.2023.02.019
    [34] 边少锋, 刘一, 纪兵, 等. 北斗三号卫星观测信息高度角相关随机模型统计特性分析[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1615-1624.

    BIAN S F, LIU Y, JI B, et al. Analysis of statistic testing of elevation-dependent stochastic models of BDS-3 satellite observation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1615-1624 (in Chinese).
    [35] 刘琳. GNSS观测值精度估计及随机模型精化方法研究[D]. 武汉: 武汉大学, 2019.

    LIU L. Research on accuracy estimation of GNSS observations and refinement method of stochastic model[D]. Wuhan: Wuhan University, 2019 (in Chinese).
    [36] OLIVE D J. Linear regression[M]. New York : Springer International Publishing, 2017: 29-36.
    [37] 飞友科技有限公司. 全球航班飞行轨迹实时跟踪雷达[DB/OL]. (2023-12-03)[2023-12-03]. https://flightadsb.variflight.com.

    Feiyou Technology Co. , Ltd. Real time tracking radar for global flight trajectories[DB/OL]. (2023-12-03)[2023-12-03]. https://flightadsb.variflight.com.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  833
  • HTML全文浏览量:  135
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 录用日期:  2023-12-06
  • 网络出版日期:  2023-12-19
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答