留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可学习图卷积的道路场景三维激光点云语义分割方法

马庆禄 丁雪琴 黄筱潇 邹政

马庆禄,丁雪琴,黄筱潇,等. 基于可学习图卷积的道路场景三维激光点云语义分割方法[J]. 北京航空航天大学学报,2025,51(12):4041-4051 doi: 10.13700/j.bh.1001-5965.2023.0686
引用本文: 马庆禄,丁雪琴,黄筱潇,等. 基于可学习图卷积的道路场景三维激光点云语义分割方法[J]. 北京航空航天大学学报,2025,51(12):4041-4051 doi: 10.13700/j.bh.1001-5965.2023.0686
MA Q L,DING X Q,HUANG X X,et al. Learnable graph convolution-based semantic segmentation method for 3D LiDAR point clouds in road scenes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4041-4051 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0686
Citation: MA Q L,DING X Q,HUANG X X,et al. Learnable graph convolution-based semantic segmentation method for 3D LiDAR point clouds in road scenes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4041-4051 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0686

基于可学习图卷积的道路场景三维激光点云语义分割方法

doi: 10.13700/j.bh.1001-5965.2023.0686
基金项目: 

重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0551);交通工程应用机器人重庆市工程实验室2022年度开放课题计划(CELTEAR-KFKT-202301); 重庆市研究生科研创新项目(CYS23502)

详细信息
    通讯作者:

    E-mail:qlm@cqjtu.edu.cn

  • 中图分类号: TP391

Learnable graph convolution-based semantic segmentation method for 3D LiDAR point clouds in road scenes

Funds: 

General Project of Natural Science Foundation of Chongqing, China (CSTB2023NSCQ-MSX0551); 2022 Open Project Plan of Traffic Engineering Application Robot Chongqing Engineering Laboratory (CELTEAR-KFKT-202301); Chongqing Graduate Research Innovation Project (CYS23502)

More Information
  • 摘要:

    针对现有自动驾驶系统中三维激光点云语义分割普遍存在的局部特征提取能力不足和难以捕捉全局上下文信息等问题,提出一种基于可学习图卷积的道路场景三维激光点云语义分割网络。通过将激光点云体素化后进行节点选取,设计的栅格查询模块可以为学习过程提供更完整的激光点云覆盖,同时,设计可学习卷积核,其形状和权值在训练阶段是可学习的,能更好地处理激光点云中的形变问题;在基准网络结构的每一层后加入改进图卷积层,能够通过动态图计算获得点的局部邻域信息,并在全连接层叠加局部信息获取全局属性。利用数据集Semantickitti对改进前后模型进行对比分析,实验结果表明:改进网络模型的平均交并比(mIoU)值达到59.7%,相比基准模型提高了3.9%,比动态图卷积神经网络(DGCNN)和Lattice Net也分别提高了3.6%和0.9%。研究成果证实了所提的改进网络模型能有效提高自动驾驶道路环境下激光点云语义分割精度,有助于提升激光雷达在自动驾驶中的应用效果。

     

  • 图 1  栅格查询模块结构

    Figure 1.  Grid query module structure

    图 2  感受野$R_n^M$和卷积核KS图示

    Figure 2.  Diagram of receptive fields $R_n^M$and convolutional kernel KS

    图 3  相邻点的内积关系

    Figure 3.  Inner product relationship of adjacent points

    图 4  GGCN网络整体框架

    Figure 4.  GGCN network overall framework

    图 5  损失函数曲线

    Figure 5.  Loss function curves

    图 6  Semantickitti数据集原始激光点云

    Figure 6.  Semantickitti dataset original LiDAR point cloud

    图 7  Semantickitti数据集语义分割结果

    Figure 7.  Results of semantic segmentation on Semantickitti dataset

    图 8  Semantickitti类别精度分析

    Figure 8.  Semantickitti class accuracy analysis

    图 9  各指标权衡分析

    Figure 9.  Trade-off analysis of each index

    图 10  GGCN模型分类误差分析

    Figure 10.  Analysis of classification error of GGCN model

    表  1  Semantickitti数据集各类别分割结果比较

    Table  1.   Comparison of segmentation results for various categories in Semantickitti dataset %

    模型 IoU
    道路 人行道 停车场 摩托车 植被 地形 树干 建筑物
    基准模型 91.6 73.6 60.2 90.5 42.1 83.4 81.4 66.7 61.4 89.4
    DGCNN 91.8 74.9 63.6 91.6 42.4 80.1 81.1 66.5 61.8 89.2
    Lattice Net 88.8 72.1 61.3 96.0 42.5 81.6 84.6 68.5 69.2 90.5
    GGCN 91.8 75.3 64.0 95.6 43.6 84.0 81.0 68.7 65.3 92.3
    下载: 导出CSV

    表  2  Semantickitti数据集评价指标对比

    Table  2.   Comparison of evaluation indicators of Semantickitti dataset %

    模型 mIoU H R F1-score
    基准模型 55.8 90.2 93.3 91.7
    DGCNN 56.1 90.5 92.1 91.3
    Lattice Net 58.8 91.3 92.6 91.9
    GGCN 59.7 91.7 92.4 92.0
    下载: 导出CSV

    表  3  不同网络模块消融结果

    Table  3.   Ablation results of different network modules

    基准模型 栅格查询模块 可学习卷积核 损失函数模块 mIoU/%
    55.8
    56.6
    58.6
    59.7
    下载: 导出CSV

    表  4  评价指标误差分析

    Table  4.   Error analysis table of evaluation indicators %

    模型 EAI EAH EAR EAF ERI ERH ERR ERF
    基准模型 3.9 1.5 0.9 0.3 7.0 1.7 1.0 0.4
    DGCNN 3.6 1.2 0.3 0.8 6.4 1.3 0.3 0.8
    Lattice Net 0.9 0.4 0.2 0.1 1.5 0.4 0.2 0.1
    下载: 导出CSV
  • [1] LI Y, IBANEZ-GUZMAN J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 2020, 37(4): 50-61. doi: 10.1109/MSP.2020.2973615
    [2] KURANI A, DOSHI P, VAKHARIA A, et al. A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting[J]. Annals of Data Science, 2023, 10(1): 183-208. doi: 10.1007/s40745-021-00344-x
    [3] 陈科, 管海燕, 雷相达, 等. 基于特征增强核点卷积网络的多光谱LiDAR点云分类方法[J]. 地球信息科学学报, 2023, 25(5): 1075-1087.

    CHEN K, GUAN H Y, LEI X D, et al. Multispectral LiDAR point cloud classification method based on feature-enhanced kernel point convolutional network[J]. Journal of Geo-Information Science, 2023, 25(5): 1075-1087(in Chinese).
    [4] WANG P S, LIU Y, GUO Y X, et al. O-CNN: Octree-based convolutional neural networks for 3D shape analysis[J]. ACM Transactions on Graphics, 2017, 36(4): 1-11.
    [5] LIANG P, FANG Z J, HUANG B, et al. PointFusionNet: point feature fusion network for 3D point clouds analysis[J]. Applied Intelligence, 2021, 51(4): 2063-2076. doi: 10.1007/s10489-020-02004-8
    [6] 张硕, 叶勤, 史婧, 等. 改进RangeNet++损失函数的车载点云小目标语义分割方法[J]. 计算机辅助设计与图形学学报, 2021, 33(5): 704-711.

    ZHANG S, YE Q, SHI J, et al. Semantic segmentation method for vehicle-mounted point cloud small target improved RangeNet++ loss function[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(5): 704-711(in Chinese).
    [7] 谭光鸿, 侯进, 韩雁鹏, 等. 基于卷积神经网络的低参数量实时图像分割算法[J]. 激光与光电子学进展, 2019, 56(9): 100-108.

    TAN G H, HOU J, HAN Y P, et al. Low-parameter real-time image segmentation algorithm based on convolutional neural network[J]. Progress in Laser & Optoelectronics, 2019, 56(9): 100-108(in Chinese).
    [8] 程鑫, 王宏飞, 周经美, 等. 基于体素柱形的激光雷达点云车辆目标检测算法[J]. 中国公路学报, 2023, 36(3): 247-260.

    CHENG X, WANG H F, ZHOU J M, et al. Vehicle target detection algorithm in Lidar point cloud based on voxel column[J]. China Journal of Highway and Transportation, 2023, 36(3): 247-260(in Chinese).
    [9] SHI S S, JIANG L, DENG J J, et al. PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3D object detection[J]. International Journal of Computer Vision, 2023, 131(2): 531-551. doi: 10.1007/s11263-022-01710-9
    [10] 吴泽群, 曹猛, 韩世超, 等. 基于高密度激光点云和深度学习的高速公路标线识别[J]. 公路, 2022, 67(6): 247-253.

    WU Z Q, CAO M, HAN S C, et al. Highway marking recognition based on high-density laser point cloud and deep learning[J]. Highway, 2022, 67(6): 247-253(in Chinese).
    [11] 黄郑, 顾徐, 王红星, 等. 基于改进PointNet++的输电杆塔点云语义分割模型[J]. 中国电力, 2023, 56(3): 77-85.

    HUANG Z, GU X, WANG H X, et al. Semantic segmentation model of transmission tower point cloud based on improved PointNet++[J]. Electric Power, 2023, 56(3): 77-85(in Chinese).
    [12] 吴军, 崔玥, 赵雪梅, 等. SSA-PointNet++: 空间自注意力机制下的3D点云语义分割网络[J]. 计算机辅助设计与图形学学报, 2022, 34(3): 437-448.

    WU J, CUI Y, ZHAO X M, et al. SSA-PointNet++: 3D point cloud semantic segmentation network based on spatial self-attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(3): 437-448(in Chinese).
    [13] 马庆禄, 黄筱潇, 孔国英. 基于通道注意力和图卷积的激光三维目标检测[J]. 计算机工程与设计, 2023, 44(9): 2740-2746.

    MA Q L, HUANG X X, KONG G Y. Laser 3D object detection based on channel attention and graph convolution[J]. Computer Engineering and Design, 2023, 44(9): 2740-2746(in Chinese).
    [14] 杨军, 党吉圣. 基于上下文注意力CNN的三维点云语义分割[J]. 通信学报, 2020, 41(7): 195-203.

    YANG J, DANG J S. Semantic segmentation of three-dimensional point cloud based on contextual attention CNN[J]. Journal on Communications, 2020, 41(7): 195-203(in Chinese).
    [15] 张坤, 朱亚薇, 王晓红, 等. 基于空间图卷积的三维点云语义分割[J]. 激光与光电子学进展, 2023, 60(2): 387-395.

    ZHANG K, ZHU Y W, WANG X H, et al. Three-dimensional point cloud semantic segmentation based on spatial graph convolution[J]. Progress in Laser and Optoelectronics, 2023, 60(2): 387-395(in Chinese).
    [16] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
    [17] WEN S H, WANG T, TAO S. Hybrid CNN-LSTM architecture for LiDAR point clouds semantic segmentation[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 5811-5818. doi: 10.1109/LRA.2022.3153899
    [18] 杨军, 李博赞. 基于自注意力特征融合组卷积神经网络的三维点云语义分割[J]. 光学精密工程, 2022, 30(7): 840-853.

    YANG J, LI B Z. Three-dimensional point cloud semantic segmentation based on convolutional neural network of self-attention feature fusion group[J]. Optics and Precision Engineering, 2022, 30(7): 840-853(in Chinese).
    [19] 兰红, 陈浩, 张蒲芬. 集图卷积和三维方向卷积的点云分类分割模型[J]. 计算机工程与应用, 2023, 59(8): 182-191.

    LAN H, CHEN H, ZHANG P F. Point cloud classification segmentation model for set map convolution and three-dimensional directional convolution[J]. Computer Engineering and Applications, 2023, 59(8): 182-191(in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  115
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 录用日期:  2024-01-19
  • 网络出版日期:  2024-03-09
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答